基于最小熵解卷积的轨面缺陷漏磁信号处理
DOI:
CSTR:
作者:
作者单位:

南京航空航天大学自动化学院 南京 211106

作者简介:

通讯作者:

中图分类号:

U216.3

基金项目:

国家重点研发计划(2018YFB21009)资助


Magnetic flux leakage signal processing of rail surface defects based on minimum entropy deconvolution
Author:
Affiliation:

School of Automation, Nanjing University of Aeronautics and Astronautics, Nanjing 210096, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    钢轨表面缺陷的漏磁检测会受到巡检速度等因素的影响,导致背景噪声增大,检测灵敏度降低。为了增强缺陷信号特征,提高漏磁信号的信噪比,提出了一种基于最小熵解卷积的漏磁信号处理方法。通过目标函数法,计算得到最优的逆滤波器参数,对采集到的漏磁信号进行滤波处理。为衡量最小熵解卷积算法滤波效果,将处理得到的缺陷信号和背景噪声信号的峰峰值与小波变换法和中值滤波法进行对比。实验结果表明,最小熵解卷积算法对缺陷信号起到了明显的增强作用,且其效果优于小波变换和中值滤波。

    Abstract:

    The magnetic flux leakage detection of rail surface defects will be affected by the inspection speed and other factors, which increase the background noise and reduces the detection sensitivity. In order to enhance the defect signal characteristics and improve the signal-to-noise ratio of MFL signal, a MFL signal processing method based on minimum entropy deconvolution is proposed in this paper. Through the objective function method, the optimal inverse filter parameters are calculated, and the collected magnetic flux leakage signal is processed by filtering. In order to measure the filtering effect of the minimum entropy deconvolution algorithm, the pep-to-peak values of the processed defect signals and background noise signals were compared with the wavelet transform and median filtering. The experimental results show that the minimum entropy deconvolution algorithm plays a significant role in enhancing the weak defect signal, and its effect is better than that of wavelet transform and median filtering.

    参考文献
    相似文献
    引证文献
引用本文

朱玥,王平,张兆珩,贾银亮.基于最小熵解卷积的轨面缺陷漏磁信号处理[J].电子测量技术,2022,45(17):167-170

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-02
  • 出版日期:
文章二维码