基于生成对抗网络的自动装卸目标物标注数据集生成方法
DOI:
CSTR:
作者:
作者单位:

1.广东工业大学机电工程学院 广州 510006;2. 佛山沧科智能科技有限公司 佛山 528225

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

“佛山广工大研究院创新创业人才团队计划项目”(20191108)


Generation method of annotation data set of automatic loading and unloading objects based on generative adversarial network
Author:
Affiliation:

1. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China; 2. Foshan Cangke Intelligent Technology Co., LTD, Foshan 528225, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对建立无人起重装卸目标检测深度学习标注数据耗时问题,设计了货物图像检测生成对抗网络,构成准确的含语义标注和关键点标注的数据集,该数据集可用于有监督深度学习语义分割模型的训练。通过融合StyleGAN与DatasetGAN的生成对抗网络,对实际应用中存在的语义特征变形问题进行改进,将生成器的样本归一化层进行修改,去除均值操作,修改噪声模块和样式控制因子的输入方式;对纹理特征单一的物体的空间位置编码能力弱的问题,将生成网络的常数输入替换为傅里叶特征,并提出一个融合非线性上下采样的模块;最后引入WGAN-GP对目标函数进行改进。应用实验生成标签数据集,使用Deeplab-V3作为评价网络,以DatasetGAN方法作为基线,在语义标签生成任务上,Deeplab-V3输出mIOU值提高14.83%,在关键点标签生成任务上,L2损失平均降低0.4×10-4,PCK值平均提高5.06%,验证了改进的生成对抗网络生成语义及关键点标注数据的可行性和先进性。

    Abstract:

    Aiming at the time-consuming problem of establishing deep learning labeling data for unmanned lifting target detection, a cargo image detection generation admision network was designed to construct an accurate data set containing semantic labeling and key point labeling, which could be used for the training of supervised deep learning semantic segmentation model. The generative adversation network of StyleGAN and DatasetGAN was fused to improve the semantic feature deformation in practical applications. The sample normalization layer of generator was modified to remove the mean operation and modify the input mode of noise module and style control factor. To solve the problem of weak coding ability of spatial position of objects with single texture feature, the constant input of generating network is replaced by Fourier feature, and a module integrating nonlinear up-down sampling is proposed. Finally, WGAN-GP is introduced to improve the objective function. Using deeplab-V3 as evaluation network and DatasetGAN as baseline, the output mIOU value of Deeplab-V3 increases by 14.83% on average in semantic label generation task, and L2 loss decreases by 0.4×10-4 on average in key point label generation task. PCK value is increased by 5.06% on average, which verifies the feasibility and advance of the improved generative adversarial network generation semantics and key point annotation data.

    参考文献
    相似文献
    引证文献
引用本文

卢国杰,王桂棠,陈泳铮,甘仕文,林宗杰.基于生成对抗网络的自动装卸目标物标注数据集生成方法[J].电子测量技术,2022,45(17):86-93

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-02
  • 出版日期:
文章二维码