基于改进CEEMD和多域特征融合的1D-CNN降雹量级识别算法
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学,江苏省气象探测与信息处理重点实验室,南京 210044; 2.南京信息工程大学,江苏省大气环境与装备技术协同创新中心,南京 210044; 3.无锡学院,无锡 214105

作者简介:

通讯作者:

中图分类号:

TB52+9; P414.9+5

基金项目:

江苏省重点研发计划社会发展项目(BE2015692)、江苏省第11届六大高峰人才项目(2014- XXRJ-006)、无锡市社会发展科技示范工程项目(N20191008)资助


Hail Magnitude Recognition Algorithm Based on Improved CEEMD and 1D-CNN of Multi-Domain Feature Fusion
Author:
Affiliation:

1.Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science and Technology, Nanjing 210044,China 2.Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044,China 3.Wuxi University, Wuxi 214105,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为便于分析冰雹对社会生产造成的灾害影响,需要对降雹量级进行分类统计,对降雹量级进行定量分析,不仅可以为灾害评估提供依据,还可以对气象预报、虚报现象做出反馈。本文针对降雹声信号提出了一种改进的互补集合经验模态分解(CEEMD)重构算法,重构后的信号最大程度地保持原有时域特征,也能对降雹声信号去噪处理。其次设计了一种多域特征融合1D-CNN模型,将重构后的原始数据、时域特征和频域特征分别作为1D-CNN的输入,在中间层进行特征拼接,最后输出分类器,结果显示本文设计的多域特征融合1D-CNN对降雹量级的识别率高达99.58%,相比于原始数据与传统1D-CNN模型识别率提高了8.75%。

    Abstract:

    In order to facilitate the analysis of the disaster impact caused by hail on social production, it is necessary to make classified statistics on hail magnitude and quantitative analysis on hail magnitude, which can not only provide the basis for disaster assessment, but also give feedback to weather forecast and false report. In this paper, an improved complementary set empirical mode decomposition (CEEMD) reconstruction algorithm is proposed for hail sound signal. The reconstructed signal retains the original time domain characteristics to the greatest extent, and can also denoise hail sound signal. Secondly, a multi-domain feature fusion 1D-CNN model is designed. The reconstructed original data, time-domain features and frequency-domain features are used as the input of 1D-CNN,the features are spliced in the middle layer, and finally the classifier is output. The results show that the recognition rate of the multi-domain feature fusion 1D-CNN designed in this paper is as high as 99.58%, which is 8.75% higher than that of the original data and the traditional 1D-CNN model.

    参考文献
    相似文献
    引证文献
引用本文

李 鹏,杨山山,徐文校,陈守静,于心远,徐永杰.基于改进CEEMD和多域特征融合的1D-CNN降雹量级识别算法[J].电子测量技术,2022,45(17):134-143

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-02
  • 出版日期:
文章二维码