基于多尺度特征融合网络的铁路工机具目标检测
DOI:
CSTR:
作者:
作者单位:

1.武汉工程大学智能机器人湖北省重点实验室,武汉430205; 2. 武汉工程大学数理学院, 武汉430205

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金资助项目(No.?62171328);湖北省教育科学规划课题(No.?2019GA090)


Object detection of railway tool based on multi-scale feature fusion network
Author:
Affiliation:

1. Hubei Province Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan430205, China; 2. School of Mathematics and Physics, Wuhan Institute of Technology, Wuhan 430205, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    图像目标检测是铁路工机具实现自动清点的关键技术。由于铁路运维工作的特殊性,采集的工机具图像通常存在光照度低、目标尺度差异大以及背景复杂等问题。已有的图像目标检测模型无法在铁路工机具检测中获得满意的效果。本文提出一种基于多尺度特征融合增强网络模型,以深度学习目标检测网络Retinanet为基础,构造了特征融合增强模块,可实现对不同尺度铁路工机具的高精度检测。以真实的铁路工机具图像作为数据集开展了实验研究,结果表明提出的模型较Retinanet具有更好的目标检测效果,mAP从97.85%提高到了98.11%,解决了复杂背景下铁路工机具的精确检测难题,为铁路智能运维奠定了技术基础。

    Abstract:

    Image object detection is crucial for the automatic counting of railway tools. However, collected images of railway tools have the characteristics of low illumination, huge difference in the scale of different objects and complex backgrounds. Existing image object detection methods cannot detect railway tools efficiently. In this paper, we propose a novel object detection model which is able to enhance the object-detection ability by fusing multi-scale features. Based on the object detection deep learning model Retinanet, we construct a feature fusion enhancement module. By fusing features, our model can efficiently detect railway tools with different scales. Experiments were conducted based on real-world datasets. Results show that our method is more efficient than Retinanet, and the mAP is increased from 97.85% to 98.11%. By the accurate detection of railway tools in complex backgrounds, our approach can lay the technical foundation for intelligent railway operation and maintenance.

    参考文献
    相似文献
    引证文献
引用本文

杨瑾,魏巍,陈灯,张彦铎,吴云韬,刘玮,郑朝晖.基于多尺度特征融合网络的铁路工机具目标检测[J].电子测量技术,2022,45(17):94-100

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-02
  • 出版日期:
文章二维码