基于稠密连接时空双流网络的行为识别方法研究
DOI:
CSTR:
作者:
作者单位:

1.青岛科技大学 自动化与电子工程学院 山东 青岛 266061; 2.青岛科技大学 机电工程学院 山东 青岛 266061

作者简介:

通讯作者:

中图分类号:

TP391.9

基金项目:

国家海洋局重大专项项目 (国海科字[2016]494号No.30)


Research on behavior recognition method based on densely connected spatiotemporal two-stream network
Author:
Affiliation:

1.College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao; 266061, China; 2. College of Electronic Mechanical Engineering, Qingdao University of Science and Technology, Qingdao; 266061, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对视频中复杂人体动作识别精度低、效率差的问题,提出了一种时空特征提取的稠密连接网络模型。首先利用两个稠密连接网络进行时空特征的提取;其次构建时空网络间的稠密连接,将时间网络中提取到的特征信息逐层输入到空间流网络中,提高两个流的时空交互性;然后使用LSTM网络分别对双流网络特征进行处理得到两个流的预测结果;最后融合双流网络的预测结果,从而实现视频中复杂行为的识别。在UCF101和HMDB51两个基准数据集上进行对比实验,得到94.69%和68.87%的准确率,优于其他算法。实验证明,本文模型可增加时空网络之间的交互性,有利于对复杂人体动作的识别。

    Abstract:

    Aiming at the problems of low accuracy and low efficiency of complex human motion recognition in video, a dense connection network model for spatio-temporal feature extraction is proposed. Firstly, two dense connected networks are used to extract spatiotemporal features; Secondly, the dense connection between spatiotemporal networks is constructed, and the feature information extracted from the spatiotemporal network is input into the spatial flow network layer by layer to improve the spatiotemporal interaction between the two flows; Then the LSTM network is used to process the characteristics of the two stream network respectively, and the prediction results of the two streams are obtained; Finally, the prediction results of dual stream network are fused to realize the recognition of complex behaviors in video. The comparative experiments on ucf101 and hmdb51 benchmark data sets show that the accuracy rates of 94.69% and 68.87% are better than other algorithms. Experiments show that this model can increase the interaction between spatiotemporal networks and is conducive to the recognition of complex human actions.

    参考文献
    相似文献
    引证文献
引用本文

程换新,孙胜意,骆晓玲,王雪.基于稠密连接时空双流网络的行为识别方法研究[J].电子测量技术,2022,45(18):134-138

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-29
  • 出版日期:
文章二维码