基于一维卷积神经网络的癫痫发作检测
DOI:
CSTR:
作者:
作者单位:

1.中北大学电气与控制工程学院 太原 030024; 2.中国科学院海西研究院泉州装备制造研究中心 泉州 362200; 3.悉尼大学电气与信息工程学院 悉尼 2006; 4.中国科学院福建物质结构研究所 福州 35002

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

国家自然科学基金面上项目(批准号:12175242)资助


Seizure detection based on one-dimensional convolutional neural network
Author:
Affiliation:

1.School of Electrical and Control Engineering, North University of China, Taiyuan, 030024, China; 2.Quanzhou Institute of Equipment Manufacturing, Haixi Institute, Chinese Academy of Sciences, Quanzhou, 362200, China; 3.School of Electrical and Information Engineering, University of Sydney, Sydney, 2006, Australia; 4.Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, 35002, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    癫痫是一种最常见的危及生命且具有挑战性的神经系统疾病。癫痫脑电信号复杂多样,人工检测癫痫信号耗时耗力,误判率高,不同的医务人员检测出来的结果也不相同,而且临床的原始脑电数据经常会包含多种噪音和生理伪迹,干扰癫痫检测性能。因此,非常有必要进一步研究高效可靠的癫痫自动检测技术,从而减轻医护人员负担。本文针对来自中国301医院收集的临床原始脑电数据进行分析训练,引入了一种基于一维卷积神经网络具有连续双层卷积结构的模型,可以高效稳定地检测到癫痫信号。结果为灵敏度、特异性、准确率和F1-score分别达到96.8%、99.8%、99.6%和96.1%,而且利用GPU进行模型训练的运行时间比对比模型低2到3倍。结果表明,本文引入的基于一维卷积神经网络模型优于现有方法,在癫痫检测性能上高效稳定,对癫痫的辅助诊断具有重要意义。

    Abstract:

    Epilepsy is one of the most common life-threatening neurological diseases. Epileptic EEG signals are complex and diverse, and manually scanning long-time EEG signals is commonly time consuming, error prone with low consistency between physicians, while the raw clinical EEG data involving noise and artifacts reduce the performance. Thus, it is important to develop a reliable, effective and stable automatic seizure detection technology based on EEG signals, to reduce physicians’ burden. Here, using the raw clinical EEG data from Chinese 301 Hospital, we introduced a novel one-dimensional convolutional neural network with a successive double-convolutional structure, to achieve high performance on seizure detection, with the sensitivity, specificity, accuracy and F1-score reaching 96.8%, 99.8%, 99.6% and 96.1%, and only using a third or half GPU time for training. The results show that the introduced neural network model based on one-dimensional convolutional neural network is superior to the existing methods, and achieves reliability, efficiency and stability on seizure detection, which is of great significance to the auxiliary diagnosis of epilepsy.

    参考文献
    相似文献
    引证文献
引用本文

刘藤子,闫序存,杨冬平.基于一维卷积神经网络的癫痫发作检测[J].电子测量技术,2022,45(18):99-105

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-29
  • 出版日期:
文章二维码