基于改进YOLOv4算法的高压塔鸟巢检测
DOI:
CSTR:
作者:
作者单位:

1广东工业大学计算机学院 广州 510006 2 云南电网有限责任公司电力科学研究院 昆明 650000

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:


Bird's nest detection of high voltage tower based on improved YOLOv4 algorithm
Author:
Affiliation:

1 School of computer science, Guangdong University of Technology, Guangzhou 510006, China; 2 Electric Power Research Institute of Yunnan Power Grid Co., LTD, Yunnan 650000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有算法对高压塔上鸟巢检测存在参数量过大,实时性不足及对小目标检测能力较弱的问题,提出了一种改进的YOLOv4算法。首先使用Mobilenetv2网络代替CSPDarknet53网络作为主干网络,减少算法的参数量且提升检测速度;同时在Mobilenetv2网络的逆残差网络中嵌入注意力Coordinate Attention模块,增强网络对目标特征提取能力。然后,对PANet网络进行改进,获取更多的细节特征信息,提高对小目标鸟巢的检测能力。最后,使用Focal Loss函数优化损失函数,降低大量简单背景样本训练的权重,提升对小目标鸟巢困难样本训练的侧重,进一步提高对小目标鸟巢的检测能力。实验结果表明,较原始的YOLOv4算法,改进后的YOLOv4算法的参数量减少了48.1%,检测速度和精度分别提高了12.9fps和2.33%。即改进后的YOLOv4算法大幅度减少了算法参数量,且对鸟巢的检测拥有更好的检测性能。

    Abstract:

    Aiming at the problems of excessive parameters, insufficient real-time performance and weak detection ability of small targets in the existing algorithms for bird's nest detection on high-voltage tower, an improved YOLOv4 algorithm is proposed. Firstly, Mobilenetv2 network is used to replace CSPDarknet53 network as the backbone network, which reduces the amount of parameters of the algorithm and improves the detection speed. At the same time, the Coordinate Attention module is embedded in the inverse residual network of Mobilenetv2 network, which enhance the ability of the network to extract target features. Then, the PANet network is improved to obtain more detailed feature information and improve the detection ability of small target bird's nest. Finally, the Focal Loss function is used to optimize the loss function, reduce the weight of a large number of simple background samples, and improve the focus on the difficult sample training of small target bird's nest, which further improves the detection ability of small target bird's nest. The experimental results show that compared with the original YOLOv4 algorithm, the parameters of the improved YOLOv4 algorithm are reduced by 48.1%, and the detection speed and accuracy are improved by 12.9fps and 2.33% respectively. That is, the improved YOLOv4 algorithm greatly reduces the amount of algorithm parameters, and has better detection performance for bird's nest detection.

    参考文献
    相似文献
    引证文献
引用本文

谢国波,郑晓锋,林志毅,林立,文刚.基于改进YOLOv4算法的高压塔鸟巢检测[J].电子测量技术,2022,45(18):145-152

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-29
  • 出版日期:
文章二维码