轻量级注意力X射线矿石检测方法
DOI:
CSTR:
作者:
作者单位:

1.江西理工大学 电气工程与自动化学院 江西 赣州 341000; 2.江钨集团赣州有色冶金研究所有限公司 江西 赣州 341000; 赣州有色冶金研究所有色金属矿冶装备工业设计中心 江西 赣州341000

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

江西省普通高校校级研究生创新专项资金项目(XY2021-S113)


Lightweight attention parallel X-ray ore detection algorithm
Author:
Affiliation:

1.School of Electrical Engineering and Automation,Jiangxi University of Science and Technology,Ganzhou 341000,China; 2.Ganzhou Nonferrous Metallurgy Research Institute, Ganzhou 341000, Jiangxi, China; Nonferrous Metal Metallurgical Research Institute of Ganzhou Mining and Metallurgy Equipment Work Design Center, Ganzhou 341000, Jiangxi, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对缺乏矿石数据集和矿石分类识别模型等因素,自建以X射线照射成像的矿石图像为数据集,并以MobileNet V2为主网络,提出基于改进MobileNet V2轻量级矿石分类模型算法。首先,通过调整扩展因子和宽度因子大幅减少模型参数量,实现模型轻量化的目的;其次,通过在部分倒残差模块和原模型分类器中嵌入高效通道注意力机制,并将剩余倒残差模块替换为含深度空洞卷积的并行特征提取网络,以增强模型特征信息提取能力,提升模型识别准确率;最后,使用迁移学习的训练方式初始化权重,加速模型训练。经过改进,该算法矿石识别准确率提升至96.720%,对比VGG16、GoogleNet、Xception、ShuffleNet和MobileNet V2在准确率和矿石检测速度都获得了提升。综合而言,相比本文实验中其他算法而言,改进算法针对矿石的识别性能具有更佳表现。

    Abstract:

    In view of the lack of ore data set and ore classification and recognition model, a lightweight ore classification model algorithm based on improved mobilenet V2 is proposed, which takes the ore image imaged by X-ray irradiation as the data set and mobilenet V2 as the main network. Firstly, by adjusting the expansion factor and width factor, the amount of model parameters is greatly reduced to realize the purpose of model lightweight; Secondly, the efficient channel attention mechanism is embedded in some inverse residual modules and the original model classifier, and the residual inverse residual module is replaced by a parallel feature extraction network with deep hole convolution, so as to enhance the ability of model feature information extraction and improve the accuracy of model recognition; Finally, the training method of transfer learning is used to initialize the weight and accelerate the model training. After improvement, the ore recognition accuracy of the algorithm is improved to 96.720%. Compared with vgg16, googlenet, xception, shufflenet and mobilenet V2, the accuracy and ore detection speed have been improved. In general, compared with other algorithms in this experiment, the improved algorithm has better performance for ore recognition.

    参考文献
    相似文献
    引证文献
引用本文

杨文龙,郭明钰.轻量级注意力X射线矿石检测方法[J].电子测量技术,2022,45(18):71-79

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-29
  • 出版日期:
文章二维码