基于红外半球摄影的无线叶面积指数传感器设计
DOI:
CSTR:
作者:
作者单位:

南京林业大学信息科学技术学院 南京 210037

作者简介:

通讯作者:

中图分类号:

TP 39

基金项目:

国家自然科学基金(32171788,31700478);江苏省大学生创新训练计划(202110298089Y)资助项目


Design of wireless leaf area index sensor based on digital infrared hemispherical photography
Author:
Affiliation:

College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    叶面积指数(leaf area index, LAI)是研究林地生态系统和植被冠层结构的重要参量,高效、准确地测量LAI是森林资源清查工程中的一项重要工作。传统的LAI测量方式需要人工手持仪器至现场测量,费时费力,近年来随着物联网技术的发展,利用无线传感节点测量LAI的技术逐渐走向成熟,但仍有部分问题亟需解决。本文提出了一种基于红外半球摄影(digital infrared hemispherical photography, DIHP)的LAI测量方法,设计了针对红外摄影颜色空间的自适应分割算法,并部署在边缘计算平台“树莓派”上,解决了传统半球摄影法(digital hemispherical photography, DHP)容易受环境干扰的问题。所设计的传感节点测量值与手持式植被冠层分析仪HM-G20比较相关性显著,R值达到了0.99691,平均测量准确度可达93.57%,比DHP方式提高了13.85%。该DIHP节点运行功耗较低,满足林业物联网长期实地部署的要求,具有极大的应用前景。

    Abstract:

    Leaf area index (LAI) is an important parameter for studying forest ecosystem and vegetation canopy structure. It is an important work in forestry engineering to measure LAI efficiently and accurately. The traditional LAI measurement method requires manual hand-held instruments to make on-site measurement, which is time consuming and laborious. In recent years, with the development of Internet of Things, the technology of using wireless sensors to measure LAI has gradually become mature, but some problems still need to be solved. This paper proposed a LAI measurement method based on digital infrared hemispherical photography (DIHP), and designed an adaptive segmentation algorithm for the color space of infrared photography, which was deployed on the edge computing platform "Raspberry Pi" to solve the problem that traditional digital hemispherical photography (DHP) methods are prone to environmental interference. The measurement results of the sensor designed in this paper are significantly correlated with the hand-held vegetation canopy analyzer HM-G20, with an R value of 0.99691 and an average measurement accuracy of 93.57%, which is 13.85% higher than that of DHP. The DIHP sensor has low operating power consumption, which meets the requirements of long-term field deployment of forestry Internet of Things and has great application prospects.

    参考文献
    相似文献
    引证文献
引用本文

王瀚聪,吴寅.基于红外半球摄影的无线叶面积指数传感器设计[J].电子测量技术,2022,45(18):139-144

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-29
  • 出版日期:
文章二维码