基于稀疏轻量卷积神经网络的管道泄漏检测
DOI:
CSTR:
作者:
作者单位:

常州大学微电子与控制工程学院 常州 213164

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:


Pipeline leakage detection algorithm based on sparse and lightweight convolutional neural network
Author:
Affiliation:

School of Microelectronics and Control Engineering,Changzhou University, Changzhou 213164, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统供水管网泄漏检测问题,本文提出了一种基于稀疏轻量卷积神经网络的管道泄漏检测算法。首先通过声音传感器采集管道泄漏的声音信号,经过立体声转换、重采样、长度对齐等预处理操作后,将其转换成梅尔频谱图。然后,构建一种稀疏轻量化的卷积神经网络模型来对梅尔频谱图进行特征抽取和泄漏检测。针对声音特征图的稀疏和时延性质,本文采用Inception网络结构来进行提高模型的特征抽取能力。此外,因为该模型需要被部署到边缘侧,因此设计了一种基于SqueezeNet的轻量化卷积神经网络模型来减少模型的参数,降低模型复杂度。实验结果表明,提出的管道泄漏检测算法在保证复杂度较低的同时具有较高的识别准确率。

    Abstract:

    In order to address the leakage detection problem of traditional water supply pipeline, in this paper, we propose a pipeline leakage detection algorithm based on the sparse and lightweight convolutional neural network technology. First, the sound signal leaked from the pipeline is collected by the sound sensors. After preprocessing operations such as stereo conversion, resampling, and length alignment, it is converted to a mel spectrogram. Then, a sparse and lightweight convolutional neural network model is proposed to perform feature extraction and leak detection on the mel spectrogram. Due to the sparse and time-delayed characteristics of sound feature images, we introduce the Inception structure to improve the feature extraction ability. In addition, to deploy the proposed model to the edge side, a lightweight convolutional neural network based on SqueezeNet is designed to reduce model parameters and thus reduce the model complexity. Massive experimental results show that the proposed pipeline leakage detection algorithm has less computation complexity and better recognition accuracy.

    参考文献
    相似文献
    引证文献
引用本文

刘 杰,朱正伟.基于稀疏轻量卷积神经网络的管道泄漏检测[J].电子测量技术,2022,45(19):131-135

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-29
  • 出版日期:
文章二维码