基于图像增广与迁移学习的输电线路金具 多目标实时检测方法
DOI:
CSTR:
作者:
作者单位:

1.三峡大学 电气与新能源学院,湖北宜昌 443002;2.湖北省输电线路工程技术研究中心(三峡大学),湖北宜昌 443002; 3.带电巡检与智能作业技术国网公司实验室 湖南长沙 421000

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金项目(51907104)、湖北省输电线路工程技术研究中心开放课题(2019KXL05)资助


Multi-objective real-time detection method of transmission line fittings based on image augmentation and transfer learning
Author:
Affiliation:

1.College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China; 2.Hubei Provincial Engineering Technology Research Center for Power Transmission Line, China Three Gorges University, Yichang 443002, China; 3.Live Inspection and Intelligent Operation Technology State Grid Corporation Laboratory, Changsha 421000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    架空输电线路金具的状态评估工作对于线路的可靠运行至关重要,金具的检测是评估工作的重要一环。针对金具识别检测中数据集人工标注的工作量大,以及难以兼顾高精度和快速性问题,提出一种基于YOLOX网络改进的输电线路金具检测方法。将无人机拍摄的金具图像进行增广预处理丰富数据集,骨干网络采用在线Mosaic、Mixup增强方式,引入基于特征提取的迁移学习并采用余弦退火学习率进行两阶段模型训练。实验结果表明,改进后的方法对各类金具检测的平均精度均值提高了18.32%,与Faster R-CNN等5种主流检测模型相比,所提方法平均检测精度均值最高,且检测速度仅次于YOLOv3,能够更加快速、精准地识别各类金具,并在一定程度上减少人工标注的工作量。

    Abstract:

    The state assessment of overhead transmission line fittings is crucial to the reliable operation of the line, and the detection of the fittings is an important part of the assessment work. In response to the heavy workload of manual labeling of datasets in identification and detection of fittings, as well as the difficulty of balancing high precision and rapidity, an improved transmission line fittings detection method based on YOLOX network is proposed. The fitting images captured by UAV are augmented with preprocessing to enrich the datasets. The backbone network adopts the enhancement methods of online Mosaic and Mixup. The transfer learning based on feature extraction is introduced and the cosine annealing learning rate is used for two-stage model training. The experimental results show that the mean average precision of the improved method for the detection of all types of fittings is improved by 18.32%. Compared with five mainstream detection models such as Faster R-CNN algorithm, the mean average precision of proposed method is the highest, and its detection speed is lower than YOLOv3’s, which can identify various types of fittings more quickly and accurately, and reduce the workload of manual labeling to a certain extent.

    参考文献
    相似文献
    引证文献
引用本文

黄力,万旭东,王凌云,刘兰兰.基于图像增广与迁移学习的输电线路金具 多目标实时检测方法[J].电子测量技术,2022,45(20):135-142

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-27
  • 出版日期:
文章二维码