基于嵌入注意力机制的UNet-DB_ECA网络检测金具研究
DOI:
CSTR:
作者:
作者单位:

1.青岛科技大学自动化与电子工程学院 青岛 266061; 2.山东省电力公司烟台供电公司互联网部 烟台 264000

作者简介:

通讯作者:

中图分类号:

TP18

基金项目:

国家自然科学基金(61971253)项目资助;山东省自然科学基金(ZR201910300033)项目资助


Research on UNet-DB_ECA network detection of electric power fittings based on embedding attention mechanism
Author:
Affiliation:

1.College of Automation & Electric Engineering, Qingdao University of Science & Technology, Qingdao 266061, China; 2.Yantai Power Supply Company of State Grid Shandong Electric Power Company, Yantai 264000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于电力巡检中所拍摄的电力金具图片数量多,检查工作量大,为了提高电力金具的自动化检测效果,本文基于UNet框架提出了一种UNet-DB_ECA(UNet Dimensionality Reduction, BN, and ECANet, UNet-DB_ECA)网络检测金具的方法。先降低UNet网络宽度,然后在网络中嵌入高效通道注意力机制模块ECANet(Efficient Channel Attention Networks, ECANet)和批量规范化(Batch Normalization, BN),最后引入了Hard-Swish激活函数,从而构建了UNet-DB_ECA网络。本文使用电力金具检测数据集进行实验,实验结果表明本文所提出的方法检测效果良好,与UNet网络检测效果相比,在提升检测效果的同时也兼顾了算法性能。此外,电力金具检测数据集中包含七类形状不同的金具类型,另一方面也表明本文所提方法具有较好泛化能力,因此该方法在电力金具自动化检测方面具有一定的应用前景。

    Abstract:

    Due to the large number of pictures of electric power fittings taken in the power inspection, the inspection workload is large. In order to improve the automatic detection effect of electric power fittings, this paper proposes a UNet-DB_ECA (UNet Dimensionality Reduction, BN, and ECANet, UNet-DB_ECA) network detection method based on UNet network. First reduce the width of the UNet network, then embed the efficient channel attention mechanism module ECANet (Efficient Channel Attention Networks, ECANet) and Batch Normalization (BN) in the network, and finally introduce the Hard-Swish activation function, thus constructing UNet- DB_ECA network. This paper uses the electric power fittings detection dataset to conduct experiments. The experimental results show that the method proposed in this paper has a good detection effect. Compared with the UNet network detection effect, it improves the detection effect and also takes into account the algorithm performance. In addition, the power fittings detection dataset contains seven types of fittings with different shapes, which shows that the method proposed in this paper has good generalization ability, so the method has certain application prospects in the automatic detection of power fittings.

    参考文献
    相似文献
    引证文献
引用本文

张 珊,王文爽,刘雪峰.基于嵌入注意力机制的UNet-DB_ECA网络检测金具研究[J].电子测量技术,2022,45(20):125-134

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-27
  • 出版日期:
文章二维码