数据异质场景下的联邦学习模型校正与聚合
DOI:
CSTR:
作者:
作者单位:

1. 武汉理工大学 计算机与人工智能学院 武汉 430079;2. 交通物联网技术湖北省重点实验室 武汉 430079

作者简介:

通讯作者:

中图分类号:

TP389.1

基金项目:


Model correction and aggregation in statistically heterogeneous federated learning
Author:
Affiliation:

1. Department of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan 430079, China; 2. Hubei Key Laboratory of Transportation Internet of Things, Wuhan 430079, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    作为一种分布式机器学习范式,联邦学习在用户数据隐私保护方面拥有巨大潜力,是近年来的一大研究热点。首先,针对数据统计异质场景中普遍存在的用户模型偏差问题,提出了基于生成对抗网络的虚拟特征生成与分类层校正方案。其次,针对特殊的概念偏移场景,提出了基于分类层聚类的个性化分组聚合方案。最后,整合上述两种方案,并在图像分类数据集CIFAR-10上进行单项实验和集成实验。实验结果显示,相较于经典的联邦平均聚合算法,本文所提出的集成方案不仅显著提升了单中心全局模型的收敛速度,也增强了多中心簇模型的个性化能力。 关键词: 联邦学习;数据异质;分类层校正;分类层聚类

    Abstract:

    As a promising distributed machine learning paradigm, Federated Learning brings huge privacy-preserving potentials, and has become a hot topic of research in recent years. To tackle client drift induced by statistically heterogeneous user data, this paper first presents an intermediate feature generation method based on Generative Adversarial Networks for the aim of classifier correction. Secondly, to deal with the particular problem of concept shift, a personalized model aggregation approach is proposed on the basis of classifier clustering. Finally, the two strategies mentioned above are integrated and tested on the CIFAR-10 image classification dataset. Various empirical results show that the proposed integrated strategy, compared to the classic Federated Averaging algorithm, helps realize both better generalization of the single-center global model, and better personalization of the multi-center cluster models.

    参考文献
    相似文献
    引证文献
引用本文

邹承明,赵宁.数据异质场景下的联邦学习模型校正与聚合[J].电子测量技术,2022,45(20):102-109

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-27
  • 出版日期:
文章二维码