多场景下的人体跌倒检测方法及应用
DOI:
CSTR:
作者:
作者单位:

1.无锡开放大学 机电与信息学院 无锡 214001; 2.苏州科技大学 电子与信息工程学院 苏州 215009; 3.浙江工业大学 信息工程学院 杭州 310023

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:

国家自然科学基金资助项目(51874205)


Detection method and application of human fall in multiple scenarios
Author:
Affiliation:

1. College of Mechatronics and Information, Wuxi Open University, Wuxi 214011,China; 2. College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; 3. College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对可穿戴MEMS传感器检测多场景下的人体摔倒行为时,单一采用加速度阈值判断存在表征不完全的问题,提出了改进麻雀搜索算法(Improved Sparrow Search Algorithm, ISSA)优化SVM(Support Vector Machine, SVM)的人体跌倒检测识别方法。首先通过可穿戴MEMS传感器采集人体离散化姿态数据,然后通过时间滑动窗口找出加速度阈值与角速度阈值特征向量并进行一级判定;同时构建ISSA-SVM跌倒状态检测模型,即利用改进的麻雀搜索算法对SVM的核参数和惩罚因子进行自适应优化,获得最优分类模型;最后根据SVM分类模型,对一级判定的数据进行分析,判断是否真正跌倒。实验仿真和产品应用结果表明:对于人体在不同场景下意外跌倒的检测,所提出的ISSA-SVM 识别检测模型测试正确率达98%以上,同时降低了漏报率。经过多次测试,跌倒检测器表现出较好的鲁棒性。

    Abstract:

    In order to solve the problem of incomplete representation when the wearable MEMS sensor is used to detect human fall behavior in multiple scenes, a SVM human fall detection and recognition method is proposed based on improved sparrow search algorithm (ISSA). Firstly, the wearable MEMS sensor is used to collect the discrete attitude data of human body. Then, the acceleration threshold and angular velocity threshold eigenvectors are found through the time sliding window and the first-order judgment was performed. At the same time, an ISSA-SVM detection model of fall state is constructed, that is, the kernel parameters and penalty factors of SVM are adaptive optimized by the improved sparrow search algorithm to obtain the optimal classification model. Finally, according to the SVM classification model, the data of the first-level decision are analyzed to judge whether the fall is real. Experimental simulation and product application results show that the test accuracy of the proposed ISSA-SVM model for the detection of human accidental falls in different scenarios is more than 98%, and the failure rate is reduced. After many tests, the fall detector shows good robustness.

    参考文献
    相似文献
    引证文献
引用本文

仲济磊,黄震宇,陈珍萍,张 静,吴 祥.多场景下的人体跌倒检测方法及应用[J].电子测量技术,2022,45(20):21-28

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-27
  • 出版日期:
文章二维码