基于PSO优化RBF的直接空冷散热器性能监测研究
DOI:
CSTR:
作者:
作者单位:

上海电力大学 自动化工程学院,上海 200090

作者简介:

通讯作者:

中图分类号:

TP277

基金项目:

上海市电站自动化技术重点实验室(13DZ2273800)项目资助


Research on performance monitoring of direct air cooling radiator based on RBF optimized by improved PSO
Author:
Affiliation:

School of Automation Engineering, Shanghai University of Electric Power,Shanghai 200090,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了监测直接空冷散热器的换热效率,采用建立模型的方法进行空冷散热器换热性能的研究预测,空冷散热器出水温度能间接反映其换热能力,可以作为空冷散热器换热性能优劣的一个评价指标。根据散热器换热模型分析以及换热性能影响因素,建立以环境风速、环境温度、风机转速、排汽压力、排汽温度以及机组负荷这6个主要因素为输入,出水温度为输出的径向基(RBF)神经网络模型。为了避免模型陷入局部最优,使用粒子群(PSO)算法优化RBF神经网络参数,并借助大量空冷塔运行数据,训练RBF神经网络,再进行仿真验证。实验结果表明,优化后模型的MAE、RMSE最小,与RBF、PSO-BP模型进行对比,验证了该算法在预测温度方面的优越性。

    Abstract:

    In order to monitor the heat transfer efficiency of the direct air-cooled radiator,the method of modeling is used to study and predict the heat transfer performance of the air-cooled radiator. The outlet temperature of the air-cooled radiator can indirectly reflect its heat transfer capacity,which can be used as an evaluation index of the heat transfer performance of the air-cooled radiator. According to the analysis of the radiator heat transfer model and the influencing factors of heat transfer performance,the Radial Basis Function (RBF) neural network model was established with environmental wind speed,environmental temperature,fan speed,exhaust steam pressure,exhaust steam temperature and unit load as the input and outlet temperature as the output. In order to avoid the model falling into local optimum,Particle Swarm Optimization (PSO) algorithm was used to optimize the parameters of RBF neural network,and a large number of air cooling tower operation data were used to train the RBF neural network,and then simulation verification was carried out. Experimental results show that the MAE and RMSE of the optimized model are the lowest, and the comparison with RBF and PSO-BP models verifies the superiority of the proposed algorithm in temperature prediction.

    参考文献
    相似文献
    引证文献
引用本文

胡珍珍,李志斌.基于PSO优化RBF的直接空冷散热器性能监测研究[J].电子测量技术,2022,45(21):42-46

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-19
  • 出版日期:
文章二维码