面向地理对象的高分光学与SAR影像一体化分割
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学长望学院 南京 210044;2.南京信息工程大学电子与信息工程学院 南京 210044

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

江苏省博士后基金资助项目(2021K013A),江苏省六大人才高峰工程(2019XYDXX135),江苏省研究生实践创新计划项目(2022-132)


Geographic object oriented integrated segmentation of high resolution optical and SAR images
Author:
Affiliation:

1.Changwang School of Honors,Nanjing University of Information Science & Technology,Nanjing 210044,China;2.School of Electronic & Information Engineering, Nanjing University of Information Science & Technology,Nanjing 210044,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于光学和SAR影像成像方式的巨大差异,为提取统一的光学和SAR对象集合造成了很大的困难。为此,本文提出了一种面向地理对象的高分光学与SAR的一体化分割方法。该方法不同于传统一体化分割同时处理异源影像的策略,而仅对光学影像进行分割,从而获得可靠的地理对象集合;在此基础上,为每个对象自适应提取标记点,并依据粗配准结果将其投影到SAR影像中;最后,在SAR影像中开展基于标记点的区域增长,最终获得与光学影像分割对象相匹配的对象集合。通过对多组光学和SAR影像的实验结果表明,所提出方法提取的光学—SAR匹配对象集合更加接近实际的地理对象,且J-value可达7.8以上,在目视分析和定量评价中均显著优于对比方法。

    Abstract:

    Due to the great difference of imaging methods between optical and SAR images, it is very difficult to extract a unified set of optical and SAR objects. Therefore, this paper proposes a geographic object-oriented integrated segmentation method of high resolution optics and SAR. This method is different from the traditional integrated segmentation strategy of processing heterogeneous images at the same time, but only segmenting optical images, so as to obtain a reliable set of geographical objects; On this basis, the marker points are extracted adaptively for each object, and projected into the SAR image according to the coarse registration results; Finally, the region growth based on marker points is carried out in SAR image, and finally the object set matching the segmented object of optical image is obtained. The experimental results of several groups of optical and SAR images show that the optical SAR matching object set extracted by the proposed method is closer to the actual geographical object, and the j-value can reach more than 7.8, which is significantly better than the comparison method in visual analysis and quantitative evaluation.

    参考文献
    相似文献
    引证文献
引用本文

赵天宇,胡晨浩,徐赛博,潘伟豪,杨佳俊,王超.面向地理对象的高分光学与SAR影像一体化分割[J].电子测量技术,2022,45(21):82-89

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-19
  • 出版日期:
文章二维码