基于MHA与LSTM的滚动轴承性能退化趋势预测
DOI:
CSTR:
作者:
作者单位:

1. 南京信息工程大学自动化学院 江苏南京 210044 2. 南京信息工程大学江苏省大气环境与装备技术协同创新中心,江苏南京 210044

作者简介:

通讯作者:

中图分类号:

TH17; TP277

基金项目:

国家自然科学基金(62105160)、先进数控和伺服驱动技术安徽省重点实验室(安徽工程大学)开放基金申请书(XJSK202105)


Degradation trend prediction of rolling bearing based on MHA and LSTM
Author:
Affiliation:

1. School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China 2. Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    滚动轴承是机械传动设备的重要组成部件,对其进行性能退化趋势预测是保障设备安全稳定运行的关键。为了提高滚动轴承性能退化趋势预测的准确性,提出一种多头注意力机制(Multi-head-attention, MHA)与长短期记忆网络(long short-term memory, LSTM)相结合的滚动轴承性能退化趋势预测方法。首先构建时域、频域、时频域和威布尔参数的多域特征,并根据综合性能退化指标对多域特征进行筛选。其次,采用注意力机制增强关键特征的权重,并采用PCA进行特征融合,进一步采用LSTM模型预测滚动轴承性能退化趋势。最后,采用NSF I/UCR中心的轴承疲劳寿命实验数据对本文所提出的方法进行验证,并与其他几种模型进行对比分析,表明本文所提出的方法可以更加准确地预测滚动轴承性能退化趋势。

    Abstract:

    Rolling bearing is an important component of mechanical transmission equipment. The prediction of its performance degradation trend is the key to ensure the safe and stable operation of the equipment. In order to improve the accuracy of rolling bearing performance degradation trend prediction, a rolling bearing performance degradation trend prediction method based on the combination of multi-head-attention (MHA) and long short-term memory (LSTM) is proposed. Firstly, the multi domain features of time domain, frequency domain, time-frequency domain and Weibull parameters are constructed, and the multi domain features are screened according to the comprehensive performance degradation index. Secondly, the attention mechanism is used to enhance the weight of key features, PCA is used for feature fusion, and LSTM model is further used to predict the performance degradation trend of rolling bearing. Finally, the method proposed in this paper is verified by using the bearing fatigue life experimental data of NSF I / UCR center, and compared with several other models, which shows that the method proposed in this paper can more accurately predict the performance degradation trend of rolling bearing.

    参考文献
    相似文献
    引证文献
引用本文

张泰瑀,张菀,吉刘骏,郁辰,丁宇.基于MHA与LSTM的滚动轴承性能退化趋势预测[J].电子测量技术,2022,45(13):59-64

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-11
  • 出版日期:
文章二维码