基于EfficientNetV2-HDCA模型水下鱼类图像分类算法研究
DOI:
CSTR:
作者:
作者单位:

1.华北理工大学电气工程学院 唐山 063210;2.秦皇岛路田科技有限公司 秦皇岛 066010

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

基于物联网滨海湿地生态监测及预警系统研制(No. 20150212C)


Research on Underwater fish image classification Algorithm based on EfficientNetv2-HDCA Modell
Author:
Affiliation:

1.College of Electrical Engineering,North China University of Science and Technology, Tangshan 063210,China;2.Qinhuangdao Lutian Technology Co., LTD,Qinhuangdao 066010,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有的鱼类分类网络模型抗干扰能力差、耗费计算资源高、难以在野外部署等问题,该研究提出了一种基于改进EfficientNetV2模型的轻量化鱼类智能分类鉴定模型。该模型通过引入混合空洞卷积和坐标注意力模块改进主干网络EfficientNetV2的模型结构,增大感受野的同时,提高模型对目标细粒度特征的全局关注力,增强模型的抗干扰能力。训练后通过对比消融实验对模型进行评价,结果表明该研究提出的EfficientNetV2-HDCA模型在验证集上的准确率为97.01%,相较于改进前准确率提升了3.8个百分点。改进后的EfficientNetV2-HDCA模型参数量为 22.06MB,较改进前增加了0.45MB。为了直观的展示该研究提出的EfficientNetV2-HDCA模型的有效性,又通过了Grad-CAM热力实验,实验结果表明该模型较改进前可以更加全面的提取鱼类的关键部位特征,具有一定的抗干扰能力。

    Abstract:

    In view of the problems of the existing fish classification network models, such as poor anti-interference ability, high computational resource consumption, and difficulty in field deployment, this study proposed a lightweight fish intelligent classification and identification model based on the improved EfficientNetV2 model. By introducing Hybrid Dilated Convolution and Coordinate Attention modules, this model improves the model structure of EfficientNetV2, increases the receptive field, improves the global attention of the model to the fine-grained features of the target, and enhances the anti-interference ability of the model. After training, the model was evaluated by comparative ablation experiments, and the results showed that the accuracy of the EfficientNetV2 - HDCA model proposed in this study on the verification set was 97.01 %, which was 3.8 percentage points higher than that the accuracy before improvement. The number of parameters in the improved EfficientNetV2 - HDCA model is 22.06MB, which is 0.45MB higher than that before improvement. In order to visually demonstrate the effectiveness of the EfficientNetV2-HDCA model proposed in this study, the Grad-CAM thermal experiment was also passed. The experimental results show that the model can extract the features of key parts of fish more comprehensively than before, and has a certain anti-interference ability.

    参考文献
    相似文献
    引证文献
引用本文

龚瑞昆,赵学智,赵福生.基于EfficientNetV2-HDCA模型水下鱼类图像分类算法研究[J].电子测量技术,2022,45(22):128-134

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-19
  • 出版日期:
文章二维码