基于深度学习的非机动车头盔佩戴检测方法研究
DOI:
CSTR:
作者:
作者单位:

1.无锡学院 电子信息工程学院,江苏省无锡市 214105 2.南京信息工程大学 电子信息与通信工程学院,江苏省南京市 210044; 3.江苏省集萃深度感知技术研究所,江苏省无锡市

作者简介:

通讯作者:

中图分类号:

TN919.8

基金项目:


Research on non motor vehicle helmet wearing detection method based on deep learning
Author:
Affiliation:

1.Wuxi University, School of Electronic Information Engineering, Wuxi City Jiangsu Province 214105;2.Nanjing University of Information Engineering, School of electronic information and Communication Engineering, Nanjing City Jiangsu Province 210044;3.Institiue of Deep Perception Technology,JITRI

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来,由于电动车驾驶人未佩戴头盔行车导致的交通事故频频发生,造成了较大的人身伤害与损失,调查显示事故多在交通路口发生,为此,有必要开展交通路口电动车驾驶人头盔佩戴行为的监测与管控。本文利用机器视觉传感器收集大量电动车及驾驶人目标数据,制作相应的数据集,将处理后的数据集在Pytorch框架上利用改进的Yolov5神经网络进行训练,获得最优权重参数;实验对比发现,改进后的Yolov5算法对于电动车和头盔的检测精度分别达到了92%和98%,比原始神经网络的识别准确度可提高1%至2%。最终联合使用训练改进的Yolov5模型和Sort算法,在检测电动车佩戴头盔情况的同时,对其进行跟踪标号,以此实现对交通路口违规电动车驾驶行为的有效管控。

    Abstract:

    In recent years, traffic accidents caused by electric vehicle drivers driving without helmets have occurred frequently, resulting in great personal injury and loss. The investigation shows that most accidents occur at traffic intersections. Therefore, it is necessary to carry out the monitoring and control of helmet wearing behavior of electric vehicle drivers at traffic intersections. In this paper, a large number of target data of electric vehicles and drivers are collected by machine vision sensors, and the corresponding data sets are made. The processed data sets are trained on the pytoch framework by using the improved yolov5 neural network to obtain the optimal weight parameters; Compared with the original neural network, the improved Yolov5 algorithm has a detection accuracy of 92% and 98% for electric vehicles and helmets, which is 1% to 2% higher than that of the original neural network. Finally, the training improved yolov5 model and sort algorithm are used together to track and label electric vehicles while detecting their wearing helmets, so as to realize the effective control of illegal electric vehicle driving behavior at traffic intersections.

    参考文献
    相似文献
    引证文献
引用本文

朱硕,黄剑翔,汪宗洋,许芯浚,边松岩.基于深度学习的非机动车头盔佩戴检测方法研究[J].电子测量技术,2022,45(22):120-127

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-19
  • 出版日期:
文章二维码