基于DeblurGAN的运动模糊图像盲复原算法研究
DOI:
CSTR:
作者:
作者单位:

1.安徽信息工程学院 计算机与软件工程学院,安徽 芜湖 241000;2.南京信息工程大学 电子与信息工程学院,江苏 南京210044;3.中央财经大学 信息学院,北京100098

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

安徽省自然科学基金(2008085MF201);科技部科技创新2030-“新一代人工智能”重大项目(No.2020AAA0103601);安徽高校自然科学研究一般项目、安徽信息工程学院青年科研基金项目(22QNJJKJ001)


Research on blind restoration algorithm of motion blur image based on DeblurGAN
Author:
Affiliation:

1.Anhui Institute of Information Engineering,Wuhu 241000, China 2.Department of Electronic and Information Engineering, Nanjing University of Information & Science Technology, Nanjing 210044, China 3.Central University of Finance and Economics, Beijing 100098, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    DeblurGAN方法利用条件生成对抗网络解决了端到端的图像去模糊问题,但存在图像边缘细节恢复不足以及鲁棒性不高的问题,针对此问题,提出一种基于DeblurGAN的运动模糊图像盲复原方法。在生成网络中,采用多尺度卷积核神经网络提取特征,并使用级联空洞卷积扩大神经元的感受野;采用自适配归一化方法代替原来生成器中使用的实例归一化方法。其次,引入了梯度图像L1损失,结合对抗损失和感知损失,将其作为图像去模糊的正则约束,使得生成图像的边缘特征更加清晰。实验结果表明,提出方法复原的图像峰值信噪比数值较DeblurGAN算法高出5.4%,结构相似性指标高出1%;在主观上清晰化效果较好,且消除了网格效应。

    Abstract:

    The DeblurGAN method uses Conditional Generative Adversarial Networks (cGANs) to solve the end-to-end image deblurring problem, but there are problems of insufficient image edge detail recovery and low robustness. Aiming at this problem, a blind restoration method of motion blurred images based on DeblurGAN is proposed. In the generative network, a multi-scale convolution kernel neural network is used to extract features, and cascaded atrous convolution is used to expand the receptive field of neurons; an adaptive normalization method is used to replace the instance normalization method used in the original generator. Second, the gradient image L1 loss is introduced, combined with adversarial loss and perceptual loss, as a regular constraint for image deblurring, making the edge features of the generated image clearer. The experimental results show that the peak signal-to-noise ratio of the image restored by the proposed method is 5.4% higher than that of the DeblurGAN algorithm, and the structural similarity index is 1% higher; the subjective clearing effect is better, and the grid effect is eliminated.

    参考文献
    相似文献
    引证文献
引用本文

孙晶晶,张艳艳,高超,胡佳琦,程菲.基于DeblurGAN的运动模糊图像盲复原算法研究[J].电子测量技术,2022,45(22):112-119

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-19
  • 出版日期:
文章二维码