基于YOLOv4优化的轻量级无人机障碍物检测方法
DOI:
CSTR:
作者:
作者单位:

西安石油大学计算机学院 西安 710065

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:


Lightweight UAV obstacle detection method optimized based on YOLOv4
Author:
Affiliation:

School of Computer Science, Xi’an Shiyou University, Xi’an Shanxi 710065,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    无人机平台内存小、计算资源有限。针对经典检测方法的网络结构复杂、检测速度慢等问题,提出一种基于轻量化的实时检测方法。首先,将轻量化模型MobileNetv3代替CSPDarknet53作为主干网络并融合有效通道注意力机制从而减小模型内存占用。其次,引入残差结构融合模块RFM,增强网络的特征提取能力。为了进一步提高障碍物检测的泛化能力和算法的收敛速度,采用Control Distance-IOU损失函数替换CIOU损失函数进行网络训练。实验结果表明,在与原模型检测效果基本相同的情况下,改进后的模型内存占比减少了80%仅39.5M,FPS提高了168%达到49.21帧/s。

    Abstract:

    The drone platform has small memory and limited computing resources.Aiming at the problems of complex network structure and slow detection speed of classical detection methods, a real-time detection method based on lightweight is proposed. Firstly, the lightweight model MobileNetv3 replaces CSPDarknet53 as the backbone network and the effective channel attention mechanism is fused to reduce the memory occupation of the model. Secondly, the residual structure fusion module RFM is introduced to enhance the feature extraction capability of the network. To further improve the generalization ability of obstacle detection and the convergence speed of the algorithm, the Control Distance-IOU loss function is replaced by the CIOU loss function for network training.The experimental results show that memory occupation of the improved model is reduced by 80% to only 39.5M and the FPS is improved by 168% to 49.21 frames/s under the same basic detection effect as the original model.

    参考文献
    相似文献
    引证文献
引用本文

白俊卿,张文静.基于YOLOv4优化的轻量级无人机障碍物检测方法[J].电子测量技术,2022,45(22):87-91

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-19
  • 出版日期:
文章二维码