基于改进Adam优化算法的中文短文本分类方法
DOI:
CSTR:
作者:
作者单位:

南京信息工程大学 南京 210044

作者简介:

通讯作者:

中图分类号:

TP391.1

基金项目:

国家自然科学基金(61705109);江苏高校优势学科建设工程资助项目;江苏省双创团队人才计划


Research on Chinese short text classification method based on improved Adam optimization algorithm
Author:
Affiliation:

Nanjing University of Information Science and Technology, Nanjing 210044, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对BERT模型中编码器提取特征信息时因并行计算而缺少文本的时序信息及模型网络复杂度较高易受偏差影响等问题,本文提出一种基于改进Adam优化算法的模型DTSCF-Net。模型采用BERT模型提取短文本的语义特征表示,将语义特征输入到Bi-GRU中,提取具有上下文时序特征的语义信息,输入Maxpooling层筛选最优特征,分类得到该短文本的类别。针对Adam算法在拟合中产生的动量偏差添加校正算法来缓解性能下降,对比两个连续时间步上的校正动量值,选取两个时间步中的动量最大值代入梯度计算,并对学习率添加自适应调节因子,利用上一次迭代的梯度值,实现学习率的自适应调节,提高分类精度。实验表明,DTSCF-Net的分类准确率为94.86%,相较于同实验环境下的基准模型BERT、BERT-Bi-GRU分别提高2.07%、1.71%。结果证明本文所提方法具有一定的性能提升。

    Abstract:

    The model uses the BERT to extract the semantic feature representation of the short text, inputs the semantic features into the Bi-GRU and extracts the semantic information with contextual timing features. The model feeds the features into the Maxpooling layer to filter the optimal features and classify them to get the category of the short text. A correction algorithm is added to mitigate the performance degradation for the momentum bias generated by the Adam algorithm in the fitting. The Adam algorithm is improved by comparing the corrected momentum values at two consecutive time steps and selecting the maximum value of momentum in the two time steps to substitute into the gradient calculation. The improved Adam algorithm adds an adaptive adjustment factor to the learning rate and uses the gradient value of the previous iteration to achieve adaptive adjustment of the learning rate and improve the classification accuracy. Experiments show that the classification accuracy of DTSCF-Net is 94.86%, which is 2.07% and 1.71% higher than that of the benchmark model BERT and BERT-Bi-GRU respectively in the same experimental environment. The results demonstrate that the proposed method in this paper has certain performance improvement.

    参考文献
    相似文献
    引证文献
引用本文

赵志杰,张艳艳,毛翔宇.基于改进Adam优化算法的中文短文本分类方法[J].电子测量技术,2022,45(23):132-138

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-08
  • 出版日期:
文章二维码