基于FPFH的权重局部最优投影点云精简算法
DOI:
CSTR:
作者:
作者单位:

1.中北大学机械工程学院,山西太原 030051;2. 山西省起重机数字化工程技术研究中心,山西太原 030051

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:


Weighted local optimal projection point cloud simplification algorithm based on FPFH
Author:
Affiliation:

1.North University of China, School of mechanical engineering, Taiyuan Shanxi 030051, China;2.Shanxi Crane Digital Engineering Technology Research Center, Taiyuan Shanxi 030051

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有点云简化算法存在易丢失关键特征和复杂潜在曲面信息的问题,提出一种基于FPFH的权重局部最优投影(WLOP)点云精简算法。首先,采用快速点特征直方图(FPFH)查找并提取原始模型中的特征点;然后,通过WLOP算法精简原始稠密点云,生成去噪、无离群点且均匀分布的点云;最后,利用点云融合方法将特征点与简化模型融合并去除冗余点。将本文算法与最小包围盒法、最远点采样法、权重局部最优投影算法进行对比实验。实验结果表明本文算法在简化率为30%时,点云分布均匀性和特征保留方面均优于其他算法。此外,可视化分析结果表明,本文算法既能够保证精简模型的完整性,又能较好地保留原始点云关键特征。信息熵分析结果表明,精简后的点云包含信息丰富,特征表达准确。该算法可为点云重建提供重要应用价值。

    Abstract:

    In order to tackle the problem that the original point cloud simplification was easy to lose key features and complex latent surface information, this passage proposed a weighted local optimal projection (WLOP) point cloud simplification algorithm based on FPFH. Firstly, this passage used Fast Point Feature Histogram (FPFH) to find and extract feature points in the original model. Then, the original dense point cloud was reduced by the WLOP algorithm to generate point cloud which had no noise, no outliers, and was evenly distributed. Finally, a point cloud fusion method was used to combine the feature points with the simplified model and remove redundant points. This passage carried out comparative experiments between algorithm with minimum rectangular bounding box algorithm, farthest point sampling algorithm and weighted local optimal projection. The experimental conclusion indicates that the algorithm in this paper is better than other algorithms in terms of distribution uniformity and feature retention when the reduction rate is 30%. In addition, the visual analysis results show that the algorithm in this paper not only guarantee the integrity of the simplified model, but also better preserve the key features of the original point cloud. The results of information entropy analysis show that the simplified point cloud contains richer information and expresses more accurate feature. The algorithm can provide important application value for point cloud reconstruction.

    参考文献
    相似文献
    引证文献
引用本文

王曦,王宗彦,张宇廷,吴璞,范浩东.基于FPFH的权重局部最优投影点云精简算法[J].电子测量技术,2022,45(23):119-124

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-08
  • 出版日期:
文章二维码