基于遗忘因子递推最小二乘法的锂电池 等效电路模型参数辨识方法
DOI:
CSTR:
作者:
作者单位:

广州广电计量检测股份有限公司 广州 510656

作者简介:

通讯作者:

中图分类号:

TM912.9

基金项目:

广东省重点领域研发计划项目(No. 2019B090908003)


Parameter identification method of lithium battery equivalent circuit model based on forgetting factor recursive least squares
Author:
Affiliation:

Guangzhou GRG metrology and test Co., Ltd, Guangzhou 510656, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文对现有常用的锂离子电池模型进行分析,建立了便于工程应用的二阶RC网络等效电路模型,并在MATLAB中搭建相应电池模型,利用实测数据对电池模型参数进行离线辨识,对模型精度进行了验证。考虑到模型参数值在电池充放电过程中并不恒定,而是受到充放电倍率和电池荷电状态等因素影响不断变化,因此为提高模型精度,采用含遗忘因子的递推最小二乘方法进行模型参数的在线辨识,通过仿真分析对比不同遗忘因子的影响,确定了遗忘因子的最佳范围。实验结果表明,随着遗忘因子从1开始减小,模型的精度会先提高再减小。本模型比较合适的遗忘因子范围大致为0.90~0.95,最佳值应在0.94附近,此时模型的平均电压误差仅为0.00043V,证明了本文辨识方法的正确性和高精度。

    Abstract:

    In this paper, the existing commonly used lithium-ion battery models are analyzed, and a second-order RC network equivalent circuit model which is convenient for engineering application is established. The corresponding battery models are built in MATLAB, and the measured data are used to identify the battery model parameters offline, and the accuracy of the model is verified. Considering that the values of model parameters are not constant in the process of battery charging and discharging, but constantly change due to factors such as charging and discharging rate and battery SOC, in order to improve the accuracy of the model, the recursive least square method with forgetting factors is adopted to identify the model parameters online, and the optimal range of forgetting factors is determined by comparing the influences of different forgetting factors through simulation analysis. The experimental results show that as the forgetting factor decreases from 1, the accuracy of the model will first increase and then decrease. The appropriate forgetting factor range of this model is about 0.90~0.95, and the best value should be around 0.94. At this time, the average voltage error of the model is only 0.00043V, which proves the correctness and high accuracy of the identification method in this paper.

    参考文献
    相似文献
    引证文献
引用本文

赵可沦,江境宏,邓 进,刘洪飞.基于遗忘因子递推最小二乘法的锂电池 等效电路模型参数辨识方法[J].电子测量技术,2022,45(23):53-58

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-08
  • 出版日期:
文章二维码