自适应特征融合的轻量级交通标志检测方法
DOI:
CSTR:
作者:
作者单位:

华北理工大学电气工程学院,河北 唐山 063210

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:


A lightweight traffic sign detection method based on adaptive feature fusion
Author:
Affiliation:

School of Electrical Engineering, North China University of Science and Technology, Tangshan, 063200 P.R.China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前交通标志检测方法中网络计算量大、检测效果差的问题,提出一种嵌入坐标注意力机制的轻量级交通标志检测方法。首先在MobileNetv2的残差块中嵌入坐标注意力机制CA(channel attention)模块以保留通道注意力中的坐标信息;其次利用改进的MobileNetv2对YOLOv4主干网络做轻量化处理,并且在PANet中采用深度可分离卷积块降低计算量;然后使用ASFF自适应特征融合改进PANet结构来均衡不同特征层的不一致性,最后在特征融合模块加入注意力以增加目标信息的权重;并由K-Means++算法产生新的先验框聚类中心。实验表明,权重文件由136M降至54.5M削减了60%,网络体积削减了80%,精度达到96.84%,与YOLOv4网络相比仅损失了0.46%的精度。

    Abstract:

    Aiming at the problems of large amount of network computation and poor detection effect in the current traffic sign detection method, a lightweight traffic sign detection method with embedded coordinate attention mechanism is proposed. First, the coordinate attention mechanism CA module is embedded in the residual block of MobileNetv2 to retain the coordinate information in the channel attention; Secondly, the improved MobileNetv2 is used to lighten the YOLOv4 backbone network, and the depthwise separable convolution block is used in PANet to reduce the amount of computation; Then, ASFF adaptive feature fusion is used to improve the PANet structure to balance the inconsistency of different feature layers. Finally, attention is added to the feature fusion module to increase the weight of the target information; and the K-Means++ algorithm generates new a priori box cluster centers. Experiments show that the weight file is reduced by 60% from 136M to 54.5M, the network volume is reduced by 80%, and the accuracy reaches 96.84%, lose only 0.46% accuracy compared to YOLOv4 network.

    参考文献
    相似文献
    引证文献
引用本文

梁秀满,邵彭娟,刘振东,赵恒斌.自适应特征融合的轻量级交通标志检测方法[J].电子测量技术,2022,45(23):107-112

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-08
  • 出版日期:
文章二维码