基于改进YOLOv4-tiny的印刷电路板缺陷检测研究
DOI:
CSTR:
作者:
作者单位:

华北电力大学自动化系 保定 071003

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:


Research on printed circuit board defect detection based on improved YOLOv4-tiny algorithm
Author:
Affiliation:

Department of Automation, North China Electric Power University, Baoding 071003, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    印刷电路板是众多电子产品的核心和最基本的组成部分,其缺陷检测存在复杂度高和缺陷目标较小的特点,提出一种改进YOLOv4-tiny的印刷电路板缺陷检测方法,在满足检测速度的前提下,提高检测精度。首先,在主干网络的基础上添加空间金字塔池化模块,减少网络参数和提高网络预测速度的同时利用图像的局部和全局特征融合多重感受野;其次,在FPN部分增加卷积注意力模块,进一步增强不同阶段的特征融合效果,提升对小目标缺陷的目标检测准确度;最后,使用Adam优化器以提升回归过程的收敛速度与准确性,同时使用余弦退火衰减和标签平滑策略优化网络损失函数,以抑制网络训练过程中的过拟合问题。通过使用改进算法在印刷电路板缺陷数据集上进行对比实验验证表明,该文算法模型大小仅为22.85M,平均检测精度均值较原算法提升了13.38%,检测速度达到了149.03FPS(on GeForce RTX3060),具有较好的有效性和可行性。

    Abstract:

    Printed circuit boards are the core and most basic components of many electronic products, and their defect detection has the characteristics of high complexity and small defect targets. An improved YOLOv4-tiny printed circuit board defect detection method is proposed to meet the detection speed. On the premise of improving the detection accuracy. First, a spatial pyramid pooling module is added to the backbone network to reduce network parameters and improve network prediction speed while using the local and global features of the image to fuse multiple receptive fields; secondly, add a convolutional block attention module in the FPN part to further Enhance the effect of feature fusion at different stages and improve the accuracy of target detection for small target defects. Finally, Adam optimizer is used to improve the convergence speed and accuracy of the regression process, and the cosine annealing decay and label smoothing strategies are used to optimize the network loss function. In order to suppress the overfitting problem during network training. By using the improved algorithm to conduct comparative experiments on the printed circuit board defect data set, it shows that the weight file of the algorithm in this paper is only 22.85M, the average detection accuracy is improved by 13.38% compared with the original algorithm, and the detection speed reaches 149.03FPS (on GeForce RTX3060). ), with better effectiveness and feasibility.

    参考文献
    相似文献
    引证文献
引用本文

马 进,王 超.基于改进YOLOv4-tiny的印刷电路板缺陷检测研究[J].电子测量技术,2022,45(23):99-106

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-08
  • 出版日期:
文章二维码