一种融合卷积与transformer的级联包检测方法
DOI:
CSTR:
作者:
作者单位:

1.西安科技大学计算机科学与技术学院 西安 710054; 2.北京邮电大学网络与交换技术国家重点实验室 北京 10087

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:


Cascade bag detection method combining convolution and transformer
Author:
Affiliation:

1. College of Computer Science and Technology, Xi 'an University of Science and Technology, Xi 'an 710054, China; 2. State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决目前包检测算法检测类别单一、准确度较低、复杂目标难以检测等问题,研究了一种融合卷积与transformer的级联包检测方法,CT-CBDet。首先,设计了deformable conformer作为骨干网络进行特征提取,其在transformer与卷积双网络融合的基础上利用可形变卷积和空间金字塔池化模块实现几何特征变换与多尺度特征融合,以强化针对复杂特征的建模能力;然后,提出一种基于anchor统计特征的自适应正负样本选择的区域建议网络,以平衡不同尺度目标样本正负选择的公平性,增强模型的训练稳定性;最后,利用多阶段损失对模型的级联检测组件进行端到端训练。结果表明,该方法相较于基准方法Cascade RCNN平均精度值提高了5.8%,小尺度目标检测精度提高了10.9%。可见CT-CBDet可有效完成复杂场景下的包检测任务。

    Abstract:

    In order to solve the problems of single detection category, low detection accuracy and difficult detection of complex objects, a cascaded bag detection method integrating convolution and transformer is studied. CT-CBDet First, a deformable conformer is designed as a backbone network for feature extraction, which uses deformable convolution and spatial pyramid pooling modules to achieve geometric feature transformation and multi-scale feature fusion on the basis of the fusion of transformer and convolutional double network. feature modeling ability; then, a region proposal network with adaptive positive and negative sample selection based on anchor statistical features is proposed to balance the fairness of positive and negative selection of object samples at different scales and enhance the training stability of the model; finally, the cascade detection component of the model is trained end-to-end using multi-stage loss. The results show that the method improves the mAP by 5.8% and the small-scale object detection accuracy by 10.9% compared to the baseline method Cascade RCNN. It can be seen that CT-CBDet can effectively perform the bag detection task in complex scenes.

    参考文献
    相似文献
    引证文献
引用本文

罗晓霞,蒋 磊,蔡院强.一种融合卷积与transformer的级联包检测方法[J].电子测量技术,2022,45(23):91-98

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-08
  • 出版日期:
文章二维码