基于改进YOLOv5的复杂场景多目标检测
DOI:
CSTR:
作者:
作者单位:

北京信息科技大学信息与通信工程学院 北京 100101

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家重点研发计划课题资助(编号:2018YFC1800203);北京市科技创新服务能力建设-基本科研业务费(市级)(科研类)(PXM2019_014224_000026)


Improved YOLOv5 complex scene multi-target detection
Author:
Affiliation:

School of Information and communication, Beijing Information Science and Technology University, Beijing 100101, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对多目标图像检测环境复杂、目标物位置数据冗余且长宽高数据大小不一的问题,利用神经网络算法可以有效提高不同类目标物并行检测的准确度和稳定性,提出一种基于改进YOLOv5网络的多目标检测方法。首先依据不同目标物的空间尺度大小,改进模型的特征融合方法,添加多尺度特征检测层以减小多目标检测时的误差,同时增加自适应特征增强模块(Adaptive Feature Adjustment),降低网络的误检率与漏检率;然后使用 K-means++ 算法估计候选框,获得更优的框参数;最后在损失函数中使用EIOU(Efficient IOU Loss)做优化。实验表明:改进后的方法mAP(mean average precision)达到76.48%,相比经典YOLOv5网络提升了3.2%,小尺寸目标物检测准确度均值增加6.3%。改进方法网络延续YOLOv5网络的轻量高效,对于多尺度目标物检测获得更优的检测精度,能够实现更准确的实时多目标检测。

    Abstract:

    Aiming at the problems of complex multi-target image detection scenes and redundant target position data with different length, width and height, the neural network algorithm can effectively improve the accuracy and stability of parallel detection of different types of targets. A multi-target detection method based on the improved YOLOv5 network is proposed. First, according to the spatial scale of different objects, the feature fusion method of the model is improved, and a multi-scale feature detection layer is added to reduce the error of multi-target detection. At the same time, Adaptive Feature Adjustment module is added to reduce the false detection rate and missed detection rate of the network; then K-means++ algorithm is used to estimate the candidate frame to obtain better frame parameters; finally, Efficient IOU Loss is used in the loss function for optimization. Experiments show that the mean average precision of the improved method reaches 76.48%, which is 3.2% higher than the classic YOLOv5 network, and the average detection accuracy of small-sized objects increases by 6.3%. The improved method network continues the lightweight and high-efficiency of the YOLOv5 network, obtains better detection accuracy for multi-scale target detection and can achieve more accurate real-time multi-target detection.

    参考文献
    相似文献
    引证文献
引用本文

强 栋,王占刚.基于改进YOLOv5的复杂场景多目标检测[J].电子测量技术,2022,45(23):82-90

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-08
  • 出版日期:
文章二维码