轻量化无人机航拍目标检测算法
DOI:
CSTR:
作者:
作者单位:

1.三峡大学湖北省建筑质量检测装备工程技术研究中心,湖北 宜昌 443002;2.三峡大学计算机与信息学院,湖北 宜昌 443002

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:


Target detection algorithm of lightweight UAV aerial photography
Author:
Affiliation:

1. Hubei province engineering technology research center for construction quality testing equipment, China three gorges university, Yichang 443002, China ;2. College of computer and information, China three gorges university, Yichang 443002, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无人机航拍背景复杂、检测目标小且密集。提出一种基于YOLOv5的轻量化无人机航拍目标检测算法SDS-YOLO。首先,SDS-YOLO算法重构轻量化网络结构,对特征提取网络和特征融合网络进行重构。调节检测层和感受野架构,建立深层语义与浅层语义多尺度检测信息依赖关系,增加浅层网络特征层的权重,提高对微小目标的检测能力;其次,利用聚类算法对预选框进行调整,实现重构网络最优的预选框选择机制,加快模型收敛速度。最后,使用Varifocal loss训练SDS-YOLO使IACS回归,提高模型对密集物体的检测能力。结果表明,模型经过优化后,精度提高了7.64%;模型体积4.25MB,相较于原模型大幅下降;模型计算量和推理速度均有提高。相较于当前主流算法,SDS-YOLO在各方面均取得了不错的改进,满足无人机航拍实时目标检测要求。

    Abstract:

    For UAV aerial photography, the background is complex, the detection target is small and dense. A lightweight UAV aerial photography target detection algorithm SDS-YOLO based on YOLOv5 is proposed. Firstly, SDS-YOLO algorithm reconstructs the lightweight network structure, the feature extraction network and feature fusion network are reconstructed. Adjusts the detection layer and receptive field architecture, establishes the multi-scale detection information dependence between deep semantics and shallow semantics, increases the weight of shallow network feature layer, and improves the detection ability of small targets; Secondly, the pre selection box is adjusted by clustering and genetic learning algorithm to realize the optimal pre selection box selection mechanism of reconstructed network and accelerate the convergence speed of the model. Finally, SDS-YOLO was trained with varifocal loss to make IACS regression to improve the detection ability of the model to dense objects. The results show that the accuracy of the model is improved by 7.64%; The volume of the model is 4.25MB, which is significantly lower than that of the original model; The speed and amount of reasoning are improved. Compared with the current mainstream algorithms, SDS-YOLO has made good improvements in all aspects to meet the requirements of real-time target detection in UAV aerial photography.

    参考文献
    相似文献
    引证文献
引用本文

王恒涛,张上,陈想,贾付文.轻量化无人机航拍目标检测算法[J].电子测量技术,2022,45(19):167-174

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-29
  • 出版日期:
文章二维码