基于TVFFRLS-ACKF的锂离子电池SOC估算
DOI:
CSTR:
作者:
作者单位:

上海电机学院机械学院 上海 201306

作者简介:

通讯作者:

中图分类号:

TM912

基金项目:

上海市2021年度“科技创新行动计划”项目(21DZ2304600)、2021年车载超级电容管理系统关键技术研究重点实验室开放课题(2021NUSV001)、2021年上海电机学院研究生创新项目(B1-0225-21-011-09)资助


SOC estimation of lithium-ion battery based on TVFFRLS-ACKF
Author:
Affiliation:

School of Mechanical Engineering, Shanghai Dianji University,Shanghai 201306, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    实现电池荷电状态(SOC)的估算预测是电池管理系统(BMS)的重要任务之一。电池模型参数的辨识是实现锂离子电池SOC估算的前提,也是决定其估算精度的关键因素。本文以18650型锂离子单体电池为研究对象,采用带时变遗忘因子的递推最小二乘法(TVFFRLS)对电池参数进行在线辨识,实现遗忘因子自适应的自动寻优,提高参数在线辨识的稳定性。在此基础上,采用自适应容积卡尔曼滤波(ACKF)对锂离子电池SOC进行估算,对过程噪声、量测噪声的协方差实时更新,并在不同工况下进行算法验证。结果表明,该算法噪声抑制性能良好,可以提高SOC的估算精度,最大估算误差不超过1.5%,且ACKF算法具有较强的鲁棒性。

    Abstract:

    It is one of the important tasks of battery management system (BMS) to realize battery charge state (SOC) estimation. The identification of battery model parameters is the precondition of SOC estimation for lithium-ion batteries, which is also the key factor determining the estimation accuracy of SOC. This paper took 18650 lithium-ion battery as the research object, and used the recursive least square method with time-varying forgetting factor (TVFFRLS) to identify the battery parameters online, so as to realize the automatic optimization of forgetting factor adaptation and improve the stability of parameter online identification. On this basis, the adaptive cubature Kalman filter (ACKF) was used to realize the estimation of SOC of lithium-ion batteries, and the covariance of process noise and measurement noise was updated in real time.The algorithm was verified under various working conditions. The results show that the algorithm has good noise suppression performance and can realize the estimation of SOC. The maximum estimation error of SOC is no more than 1.5%, and ACKF algorithm has strong robustness.

    参考文献
    相似文献
    引证文献
引用本文

华菁,阮观强,胡星,郁长青,袁伟光.基于TVFFRLS-ACKF的锂离子电池SOC估算[J].电子测量技术,2022,45(24):22-28

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-08
  • 出版日期:
文章二维码