基于互信息和GWB-LSSVM的网络攻击检测模型
DOI:
CSTR:
作者:
作者单位:

国网山西省电力公司信息通信分公司 太原 030000

作者简介:

通讯作者:

中图分类号:

TP393.0

基金项目:

国网山西省电力公司科技项目(52051C21000G)资助


Network attack detection model based on MI-GWB-LSSVM
Author:
Affiliation:

Information and Communications Branch, State Grid Shanxi Electric Power Company,Taiyuan 030000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    检测和识别网络攻击对于防范高级可持续威胁等网络攻击行为、促进网络基础设施健康发展,保障网络设施安全稳定运行至关重要。本文利用互信息理论完成了网络流量数据中网络攻击行为的关键特征的选取,通过改进灰狼优化算法提出一种灰狼提升算法,并基于该算法和最小二乘支持向量机提出了GWB-LSSVM模型,该模型针对当前主要网络攻击形式显示出良好的检测性能,基于NSL-KDD数据集的实验结果表明其检测精度、检测率和检测准确率分别达到了99.7%、99.3%和99.1%;同部分已有研究工作相比,其检测精度最高提升约2.58%,检测率最高提升约3.98%,准确率最高提升约3.78%,训练时间最高提升约55.9%。

    Abstract:

    Detecting and identifying cyber attacks is crucial to prevent cyber attacks such as advanced sustainable threats, promote the healthy development of network infrastructure, and guarantee the safe and stable operation of network facilities. In this paper, the key characteristics of network attacks in network traffic data are selected by using mutual information theory, a gray wolf boosting algorithm is proposed by improving the gray wolf optimization algorithm, and a GWB-LSSVM model is provided based on this algorithm and least squares support vector machine. The model shows good detection performance for the current main forms of network attacks. The experimental results based on NSL-KDD data set show that its detection precision, detection rate and detection accuracy reached 99.7%, 99.3% and 99.1% respectively. Compared with some existing research work, its detection precision is improved by up to about 2.58%, detection rate by up to about 3.98%, detection accuracy by up to about 3.78%, and the training time of the model by up to 55.9%.

    参考文献
    相似文献
    引证文献
引用本文

赵嘉,谷良,吴瑶.基于互信息和GWB-LSSVM的网络攻击检测模型[J].电子测量技术,2022,45(24):98-104

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-08
  • 出版日期:
文章二维码