基于强化学习的艾灸机器人温度控制策略研究
DOI:
CSTR:
作者:
作者单位:

1.四川大学电气工程学院 成都 610065; 2.四川省成都市第五人民医院康复医学科 成都 611130; 3.四川省成都中医药大学附属医院针灸康复科 成都 610072

作者简介:

通讯作者:

中图分类号:

TP399

基金项目:

四川省重大科技专项(2019ZDZX0019)、四川省中医药管理局项目(2018KF013)资助


Study on temperature control strategy of moxibustion robot based on reinforcement learning
Author:
Affiliation:

1.School of Electrical Engineering, Sichuan University, Chengdu 610065, China; 2.Department of Rehabilitation Medicine, Chengdu Fifth People′s Hospital, Chengdu 611130, China; 3.Department of Acupuncture and Rehabilitation, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统PID控制算法在艾灸机器人温度控制中存在参数辨识复杂、适应性差等问题,将强化学习引入到艾灸机器人温控领域中,提出了一种改进强化学习算法。首先,通过多物理场仿真软件和神经网络联合搭建智能体离线训练仿真环境,以解决智能体在线训练效率低下的问题;然后,提出一种结合奖励引导和余弦退火策略的改进强化学习算法,提高算法的收敛性和成功率;最后,将仿真环境训练后的模型迁移到真实环境进行实验验证。实验结果表明,温度超调量为0.2 ℃,稳态温度保持在43.1 ℃±0.4 ℃内,改进后的强化学习算法相比于传统PID控制算法的温度控制能力更好。

    Abstract:

    Aiming at the problems of complex parameter identification and poor adaptability of traditional PID control algorithm in temperature control of moxibustion robot, reinforcement learning is introduced into the field of temperature control of moxibustion robot, and an improved reinforcement learning algorithm is proposed. First, the offline training simulation environment of the agent is jointly built by multi-physics simulation software and neural network to solve the problem of low efficiency of online training of the agent; then, an improved reinforcement learning algorithm combining reward guidance and cosine annealing strategy is proposed to improve the convergence and success rate of the algorithm; finally, the model trained in the simulation environment is transferred to the real environment for experimental verification. The experimental results show that the temperature overshoot is 0.2 ℃, and the steady-state temperature is kept within 43.1±0.4 ℃. The improved reinforcement learning algorithm has better temperature control ability than the traditional PID control algorithm.

    参考文献
    相似文献
    引证文献
引用本文

张博,黄山,张浛芮,李应昆,涂海燕.基于强化学习的艾灸机器人温度控制策略研究[J].电子测量技术,2022,45(24):60-66

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-08
  • 出版日期:
文章二维码