基于改进YOLOX的地下排水管道缺陷识别算法
DOI:
CSTR:
作者:
作者单位:

1.桂林理工大学信息科学与工程学院 广西 541000; 2.广西“嵌入式技术与智能系统”重点实验室 广西 541000

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

国家自然科学基金(62166012)


A defect recognition method of the underground drainage pipe based on improved YOLOX algorithm
Author:
Affiliation:

1. Guilin University of Technology,College of Information Science and Engineering, Guangxi 541000; 2. Guangxi Key Laboratory of Embedded Technology and Intelligent System, Guangxi 541000

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    CCTV检测技术在地下排水管道缺陷检测被广泛应用,但CCTV收集的缺陷图像需要依赖专业的检测人员进行检测识别,结果具有一定主观性且耗费大量时间。为了实现地下排水管道缺陷检测识别自动化,提出了一种基于改进YOLOX的地下排水管道缺陷识别方法。首先针对数据集过少的问题,通过StyleGAN2对原始图像进行预处理,生成多缺陷图像。其次,为了提高检测精度,对YOLOX的特征融合层进行改进,借鉴空洞空间卷积池化金字塔思想并引入SE注意力机制解决顶层特征仅包含单尺度特征且不与其它特征图进行融合的问题,同时设计了一种基于权重的特征融合模块,解决不同特征层融合带来的特征混叠问题。最后,将YOLOX边界损失函数改为CIOU,提高目标检测框回归的效率。实验结果表明,所提的算法能够很好对沉积、渗漏、树根入侵、裂缝和错口5种缺陷进行识别,mAP达到68.76%,相比原始YOLOX算法提升了1.62%。

    Abstract:

    CCTV inspection technology is widely used in underground drainage pipe defect detection, but the defect imagescollected by CCTV need to rely on professional inspectors for inspection and identification, and the results are subjective and time-consuming. In order to automate underground drainage pipe defect detection and identification, an improved YOLOX-based underground drainage pipe defect identification method is proposed. Firstly, for the problem of too small data set, the original image is preprocessed by StyleGAN2 to generate multi-defect images. Second, to improve the detection accuracy, the feature fusion layer of YOLOX is improved by borrowing the idea of convolutional pooling pyramid in the null space and introducing the SE attention mechanism to solve the problem that the top layer features contain only single-scale features and are not fused with other feature maps, and a weight-based feature fusion module is designed to solve the feature blending problem brought by the fusion of different feature layers. Finally, the YOLOX boundary loss function is changed to CIOU to improve the efficiency of target detection frame regression. The experimental results show that the proposedalgorithm can well identify five defects, namely, deposition, leakage, tree root invasion, cracks and misalignment, with an mAP of 68.76%, which is 1.62% better than the original YOLOX algorithm.

    参考文献
    相似文献
    引证文献
引用本文

陆绮荣,丁昕,梁雅雯.基于改进YOLOX的地下排水管道缺陷识别算法[J].电子测量技术,2022,45(21):161-168

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-19
  • 出版日期:
文章二维码