面向石英坩埚的小气泡检测算法研究
DOI:
CSTR:
作者:
作者单位:

1.西安科技大学 通信与信息工程学院 西安 710054; 2.西安地山视聚科技有限公司 西安 712044

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

国家自然科学基金青年基金项目(51804248);陕西省科技厅工业攻关(2022GY-115);西安市碑林区应用技术研发项目(GX2114)资助


Research on small bubble detection algorithm for quartz crucible
Author:
Affiliation:

1. School of Communication and Information Engineering, Xi’an University of Science and Technology, Xi’an 710054, China; 2. Xi’an Dishan Vision Technology Limited Company, Xi’an 712044, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对石英坩埚气泡检测现有方法实时性差及小目标检测能力不足的问题,提出了一种改进YOLOv5的石英坩埚气泡检测算法YOLOv5-QCB。首先,自建石英坩埚气泡数据集,根据气泡尺寸小且分布密集的特点,减少网络下采样的深度,保留丰富的细节特征信息;同时,在颈部使用空洞卷积以增大特征图感受野,实现全局语义特征的提取;最后,在检测层前添加有效通道注意力机制,增强重要通道特征的表达能力。实验结果表明,相比于原模型,改进后YOLOv5-QCB能有效降低对小气泡的漏检率,平均检测精度从96.27%提升到98.76%,权重缩减了二分之一,能够实现快速、准确检测石英坩埚气泡数量。

    Abstract:

    To address the problems of poor real-time performance and insufficient small target detection capability of existing methods for quartz crucible bubble detection, a modified YOLOv5 algorithm for quartz crucible bubble detection, YOLOv5-QCB, is proposed. Firstly, a self-built quartz crucible bubble dataset is constructed, and based on the characteristics of small bubble size and dense distribution, the depth of network down-sampling is reduced to retain rich detailed feature information; meanwhile, the neck using dilated convolution to increase the feature map perceptual filed to achieve global semantic feature extraction; finally, the effective channel attention mechanism is added before the detection layer to enhance the expression of important channel features. The results show that compared with original model, the improved YOLOv5-QCB can effectively reduce the missed detection rate of small bubbles, improve the average accuracy from 96.27% to 98.76%, and reduce the weight by one-half, which can achieve fast and accurate detection of quartz crucible bubble targets.

    参考文献
    相似文献
    引证文献
引用本文

赵 谦,郑 超,马文越,尹怡晨.面向石英坩埚的小气泡检测算法研究[J].电子测量技术,2022,45(22):170-176

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-19
  • 出版日期:
文章二维码