海上平台电气温度监控系统及预测模型研究
DOI:
CSTR:
作者:
作者单位:

天津职业技术师范大学 机械工程学院 天津 300222

作者简介:

通讯作者:

中图分类号:

TM762

基金项目:

天津市自然科学基金项目(编号:19JCQNJC04200); 天津市津南区科技计划项目(编号:20210101)


Research on electric temperature monitoring system and prediction model of offshore platform
Author:
Affiliation:

School of Mechanical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对海上平台电气设备温度监控的现实需求,以无线红外温度传感器及数据采集终端为基础,构建了海上平台电气设备温度分布式监控系统,配套开发了系统应用软件,实现了平台电气设备温度的持续监控。针对传统温度预测难以应对大量波动性数据且对时间序列处理能力有限的问题,提出贝叶斯优化与长短时记忆网络(LSTM)组合预测方法。以所监测的海上平台变压器为研究对象,分析变压器运行过程中的温度特征,采用时序性较强的LSTM网络预测模型,引入贝叶斯优化算法,用于训练和更新LSTM参数。实践表明,基于贝叶斯优化的LSTM模型对海上平台变压器温度具有良好的预测效果,其均方根误差为0.139、预测准确率为98.56%。通过对支持向量机、BP神经网络、LSTM、Bayesian-LSTM四种预测模型的比较分析,证实了贝叶斯优化的LSTM模型对海上平台变压器温度预测的优势。

    Abstract:

    Based on wireless infrared temperature sensor and data acquisition terminal, a distributed temperature monitoring system for offshore electrical equipment was constructed to meet the actual requirements of temperature monitoring for offshore electrical equipment. The system application software was developed to realize continuous temperature monitoring for offshore electrical equipment. Aiming at the problem that traditional temperature prediction is difficult to deal with a large amount of fluctuating data and has limited ability to deal with time series, a combined prediction method of Bayesian optimization and LSTM was proposed. The temperature characteristics of the transformer during operation were analyzed by taking the transformer monitored offshore platform as the research object. The LSTM network prediction model with strong timing was adopted and the Bayesian optimization algorithm was introduced to train and update THE LSTM parameters. The practice shows that the LSTM model based on Bayesian optimization has good prediction effect on transformer temperature of offshore platform, and its root mean square error is 0.139 and prediction accuracy is 98.56%. Through the comparative analysis of four prediction models including support vector machine, BP neural network, LSTM and Bayesian LSTM, the advantages of Bayesian optimized LSTM model for offshore transformer temperature prediction are confirmed.

    参考文献
    相似文献
    引证文献
引用本文

梁玉真,张仕海,汝承印,朱冶诚.海上平台电气温度监控系统及预测模型研究[J].电子测量技术,2022,45(22):162-169

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-19
  • 出版日期:
文章二维码