视听资料中的目标人物重识别方法
DOI:
CSTR:
作者:
作者单位:

东华理工大学 江西 南昌 330013

作者简介:

通讯作者:

中图分类号:

TP37

基金项目:

国家重点研究计划(2018YFB1702702)资助项目


Re-identification method of target person in video materials
Author:
Affiliation:

East China University of Technology, Nanchang, 330013,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    视频监控系统实时采集视频数据,可以作为有效的第三方目击者,为案件侦破提供有利线索与信息。但由于数据量巨大,检索工作量很高,给案件取证带来了不便。针对这一问题,本文以视听资料中的目标人物检索为目标,对现有的跨摄像头人体重识别方法进行改进,实现目标人物的快速重识别。首先对目标人物图像进行切分,获得分块特征图;其次引入局部融合模块,充分保留局部特征信息及局部关联信息;然后引入全局融合模块,在去除背景噪声的同时,全面表征图像全局特征;最后,综合交叉熵损失与三元组损失函数,加速模型收敛并有效防止过拟合。仿真实验结果表明,与现有人体重识别方法相比,本文方法的准确度更高;应用软件结果表明,本文方法可以实现跨摄像头目标人物快速定位,满足视听资料目标人物的快速检索需求。

    Abstract:

    The video surveillance system collects video data in real time, which can serve as an effective third-party witness and provide favorable clues and information for case detection. However, due to the huge amount of data and the high retrieval workload, it brings inconvenience to the case collection. Aiming at this problem, this paper aims to retrieve the target person in the video evidence, and improves the existing cross-camera person weight recognition method to realize the rapid re-identification of the target person. Firstly, the target person image is segmented to obtain the block feature map; secondly, a local fusion module is introduced to fully retain local feature information and local correlation information; then a global fusion module is introduced to fully characterize the global image features while removing background noise; Finally, the cross-entropy loss and triplet loss function are integrated to accelerate the model convergence and effectively prevent over-fitting. The simulation experiment results show that compared with the existing methods of human weight recognition, the method in this paper has higher accuracy; the application software results show that the method in this paper can quickly locate the target person across cameras and meet the fast retrieval requirements of the target person in the video evidence.

    参考文献
    相似文献
    引证文献
引用本文

李萌,徐麟,宋伟宁.视听资料中的目标人物重识别方法[J].电子测量技术,2022,45(19):19-24

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-29
  • 出版日期:
文章二维码