肾透明细胞癌数字病理图像细胞核ISUP分级预测
DOI:
CSTR:
作者:
作者单位:

1.河北大学质量技术监督学院 保定 071002; 2.河北大学计量仪器与系统国家地方联合工程研究中心 保定 071002

作者简介:

通讯作者:

中图分类号:

TP2

基金项目:

河北大学科研基金(DXK201914)、河北大学校长基金(XZJJ201914)、河北省自然科学基金(H2019201378)项目资助


Prediction of nuclear ISUP grading in digital histopathological images of renal clear cell carcinoma
Author:
Affiliation:

1.College of Quality and Technical Supervision, Hebei University,Baoding 071002,China; 2.National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University,Baoding 071002,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对全切片数字病理图像中的肾透明细胞癌进行精准的细胞核分级并改善肾癌的治疗和预后,提出了一种基于多尺度通道信息拼接与融合残差网络的ccRCC病理图像国际泌尿病理学会核分级方法。通过多尺度通道信息拼接将不同阶段的语义信息进行融合,从而在不损失深度信息的同时提取更多的浅层特征,实现更准确的分类效果。实验收集了90例病人的肾组织病理切片,对WSI图像进行裁切和增强后,按照4∶1的比例分成训练集和测试集。在训练集上对CSFNet卷积神经网络模型参数进行迭代优化,并在测试集上验证模型性能。实验结果表明,提出的CSFNet模型鉴别ISUPⅠ级、ISUP Ⅱ级、ISUP Ⅲ级和正常病理图像的宏平均AUC与微平均AUC分别为0.975 8和0.979 4,准确率为88.00%,精确率为88.36%,召回率为86.67%,F1分数为87.32%,且优于其他主流的分类网络模型,因此,本文所提出的肾透明细胞癌病理图像ISUP细胞核分级模型有良好的诊断效能,具有潜在的临床应用价值。

    Abstract:

    In order to accurately grade the nuclei of renal clear cell carcinoma in whole slide images and improve the treatment and prognosis of renal cancer, an International Society of Urological Pathology nuclear grading method based on CSFNet for ccRCC pathological images was proposed. In CSFNet, the semantic information of different stages was fused through multi-scale channel information splicing, thereby extracting more shallow features without losing depth information and subsequently achieving better classification performance. The renal histological sections of 90 patients were collected in the experiment. Afterwards, the WSI images were divided into training set and test set in a ratio of 4∶1 after being cut and enhanced. The CSFNet convolutional neural network model was then optimized iteratively on the training set and verified on the test set. The experimental results showed that the proposed CSFNet model achieved a macro-AUC of 0.975 8, a micro-AUC of 0.979 4, an accuracy of 88%, a precision of 88.36%, a recall of 86.67% and a F1-score of 87.32% for classifying ISUP Ⅰ, ISUP Ⅱ, ISUP Ⅲ and normal. Furthermore, our model was superior to other traditional classification network models, which proved that the proposed ISUP nuclear grading model for ccRCC had satisfied diagnostic effectiveness and potential clinical application value.

    参考文献
    相似文献
    引证文献
引用本文

杨昆,王尉丞,秦赓,原嘉成,刘爽,薛林雁.肾透明细胞癌数字病理图像细胞核ISUP分级预测[J].电子测量技术,2023,46(4):121-128

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-22
  • 出版日期:
文章二维码