基于粒子群优化模糊PID控制的多足式真空吸附机器人控制方案设计
DOI:
CSTR:
作者:
作者单位:

1.南京理工大学自动化学院 南京 210094; 2.南京中科特检机器人有限公司 南京 211215

作者简介:

通讯作者:

中图分类号:

TP212.14

基金项目:


Design of multi legged vacuum adsorption robot control scheme based on PSO-fuzzy PID control
Author:
Affiliation:

1.School of Automation,Nanjing University of Science and Technology,Nanjing 210094, China; 2.Nanjing Sinotest Robotics Co., Ltd.,Nanjing 211215, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决高层建筑玻璃幕墙的清洗与检测问题,探索一种多足式真空吸附爬壁机器人,为实现爬壁机器人平稳运行,主要是提高电机转速的控制精度,采用模糊PID算法进行控制并在此基础上利用粒子群算法进一步迭代优化。通过粒子群算法的迭代寻优能力,实时确定模糊PID控制中PID三个参数的比例因子,得到一个性能较好的控制系统。结果表明,当比例因子Ckp、Cki、Ckd的值分别为0.1、8.23、0时系统稳定达到最优。相比于模糊PID控制,采用粒子群算法进一步优化后的系统,响应速度提升了0.024 s且同样无超调产生,能够满足系统要求。

    Abstract:

    In order to solve the problem of cleaning and testing the glass curtain wall of high-rise buildings, a multi legged vacuum adsorption wall climbing robot is explored. In order to realize the smooth operation of the wall climbing robot, the main thing is to improve the control accuracy of the motor speed. The fuzzy PID algorithm is used for control, and on this basis, the particle swarm algorithm is used for further iterative optimization. Through the iterative optimization ability of particle swarm optimization algorithm, the scale factors of three PID parameters in fuzzy PID control are determined in real time, and a control system with good performance is obtained. The results show that when the scale factors CKP, CKI and CKD are 0.1, 8.23 and 0 respectively, the stability of the system reaches the optimum. Compared with fuzzy PID control, the response speed of the system further optimized by particle swarm optimization algorithm is improved by 0.024 s, and there is also no overshoot, which can meet the requirements of the system.

    参考文献
    相似文献
    引证文献
引用本文

艾福强,包建东,刘正权.基于粒子群优化模糊PID控制的多足式真空吸附机器人控制方案设计[J].电子测量技术,2023,46(2):67-72

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-11
  • 出版日期:
文章二维码