基于FPGA与退化YOLO的手机镜片缺陷检测系统
DOI:
CSTR:
作者:
作者单位:

1.三峡大学计算机与信息学院 宜昌 443002;2.三峡大学理学院 宜昌 443002;3.三峡大学电气与新能源学院 宜昌 443002

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金面上项目(52179136)


Mobile Phone Lens Defect Detection System Based on FPGA and Degraded YOLO
Author:
Affiliation:

1. College of Computer and Information Technology, China Three Gorges University, Yichang 443002, China; 2. College of Science, China Three Gorges University, Yichang 443002, China; 3. College of Electrical and New Energy, China Three Gorges University, Yichang 443002

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对镜片缺陷检测采用图像处理法和神经网络法存在时延高、功耗高和检测缺陷类别较少等问题,设计了一种基于FPGA与退化YOLO的软硬协同检测系统。系统中使用卷积层代替YOLO网络的重排序层进行网络退化,并映射到FPGA上;采用动态量化、模块融合、双缓冲流水线、循环展开和分块等优化策略,设计可动态配置的加速IP,其中的卷积计算模块分别实现了基于Winograd和GEMM的快速卷积算法。实验结果表明,本系统的加速IP在PYNQ-Z2上获得了51.89 GOP/s的计算性能,比基于典型滑动窗口卷积计算方法的性能提高了0.76倍,加速单张图像的时延为433ms,功耗为1.07W,与Core i5-10500 CPU相比,能效是其365.27倍,实现了小型设备对手机镜片低时延、低功耗的多缺陷检测。

    Abstract:

    Aiming at the problems of high delay, high power consumption and less defect categories in lens defect detection using image processing method and neural network method, a software and hardware collaborative detection system based on FPGA and degraded YOLO is designed. In the system, the convolution layer is used to replace the reordering layer of the YOLO network for network degradation and mapped to FPGA; dynamic quantization, module fusion, double buffer pipeline, loop expansion and block segmentation optimization strategies are adopted to design dynamically configurable acceleration IP. The convolution calculation module implements fast convolution algorithms based on Winograd and GEMM respectively. The experimental results show that the acceleration IP of this system obtains the calculation performance of 51.89GOP/s on PYNQ-Z2, which is 0.76 times higher than that based on the convolution calculation method of typical sliding window. The time delay of the acceleration single image is 433ms, and the power consumption is 1.07W, compared with Core i5-10500 CPU, the energy efficiency is 365.27 times higher, which realizes the multi-defect detection of low delay and low power consumption of mobile phone lens by small equipment.

    参考文献
    相似文献
    引证文献
引用本文

王习东,王国鹏,王保昌,张浩,冯文杰,杨业泉.基于FPGA与退化YOLO的手机镜片缺陷检测系统[J].电子测量技术,2022,45(18):10-17

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-29
  • 出版日期:
文章二维码