改进Mean Shift目标跟踪算法实现
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学大气物理学院 南京 210044;2.南京信息工程大学自动化学院 南京 210044; 3.江苏省大气环境与装备技术协同创新中心 南京 210044

作者简介:

通讯作者:

中图分类号:

TN215

基金项目:

江苏省产业前瞻与关键核心技术重点项目(BE2020006-2)、国家自然科学基金(61605083)项目资助


Improved Mean Shift target tracking algorithmz
Author:
Affiliation:

1.College of Atmospheric Physics, Nanjing University of Information Science & Technology,Nanjing 210044, China; 2.School of Automation, Nanjing University of Information Science & Technology,Nanjing 210044, China; 3.CICAEET, Nanjing University of Information Science & Technology,Nanjing 210044, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目标跟踪技术目前具有较好的应用前景,但在嵌入式处理平台中面临着实时性要求高、跟踪场景复杂等情况,加上受成本和嵌入式处理平台算力的限制,其处理效果往往很难满足现实需求,因此目标跟踪等图像处理技术的落地实现是当前研究的热点内容。针对此问题,本文在FPGA平台实现了改进Mean Shift目标跟踪算法,该算法首先通过目标的概率密度分布梯度爬升来寻找目标,然后采用Kalman滤波的预测机制来预估下一帧搜寻计算的位置,从而减少Mean Shift的迭代次数。该算法实现充分利用FPGA能够并行和流水线处理的特点,实现了在1 920×1 080@60 Hz高清视频图像场景下的实时目标跟踪,其中Kalman滤波算法使其在较复杂场景下也能具备一定的抗遮挡干扰的能力。

    Abstract:

    Target tracking technology has good application prospect at present, but in an embedded processing platform is facing complicated high real-time requirements, tracking, etc., and restricted by cost and embedded processing platform to calculate force, it is often difficult to meet the demand of reality of its processing effect, so the image processing technology such as target tracking ground implementation is a hotspot of current research content. To solve this problem, this paper implemented an improved Mean Shift target tracking algorithm on FPGA platform. The algorithm first searched for the target by the gradient climbing of the probability density distribution of the target, and then used the prediction mechanism of Kalman filter to predict the location of the next frame search calculation, so as to reduce the number of iterations of Mean Shift. The algorithm makes full use of the parallel and pipelined-processing characteristics of FPGA to realize the real-time target tracking in 1 920×1 080@60 Hz hd video image scene, and the Kalman filtering algorithm enables it to have a certain ability to resist occlusion interference in more complex scenes.

    参考文献
    相似文献
    引证文献
引用本文

刘银萍,夏金锋,姜栋,徐龙,严飞.改进Mean Shift目标跟踪算法实现[J].电子测量技术,2023,46(2):31-39

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-11
  • 出版日期:
文章二维码