基于改进YOLOv5模型的印章识别
DOI:
CSTR:
作者:
作者单位:

华北水利水电大学信息工程学院 郑州 450046

作者简介:

通讯作者:

中图分类号:

TP389.1

基金项目:


Seal recognition based on the improved YOLOv5 model
Author:
Affiliation:

School of Information Engineering, North China University of Water Resources and Electronic Power,Zhengzhou 450046, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对数字化档案处理过程中,印章多、印痕浅、印章识别准确度较低的问题,提出了一种改进的YOLOv5印章识别算法。算法改进分为两个方面,首先引入CBAM注意力模块,以提高模型的特征提取能力,其次引入EIoU Loss,以替换算法中的CIOU Loss边界框回归损失函数,有效解决了纵横比描述为相对值,存在一定模糊的问题。实验表明,改进算法的印章识别F1分数达到了0.95,相较于原算法提高了2%。最后为验证模型的有效性,在数字化档案处理系统中调用改进后的YOLOv5模型对印章进行处理,结果表明本文改进算法能在系统中稳定运行。

    Abstract:

    Aiming at the problems of many seals, shallow impressions and low accuracy of seal identification, a modified YOLOv5 seal identification algorithm is proposed. The algorithm improvement is divided into two aspects. First, CBAM attention module is introduced to improve the feature extraction ability of the model. Secondly, and EIoU Loss is introduced to replace the CIOU Loss boundary box regression loss function in the algorithm, which effectively solves the aspect ratio described as the relative value, which is a certain fuzzy problem. Experiments show that the improved algorithm′s seal recognition F1 score has reached 0.95, which is a 2% improvement compared to the original algorithm. Finally, to use the seal to verify the effectiveness of the model, the improved YOLOv5 model is called in the digital archive processing system, and the results show that the improved algorithm can run stably in the system.

    参考文献
    相似文献
    引证文献
引用本文

闫新庆,贾营,赵丽,李雅琪,张晨曦.基于改进YOLOv5模型的印章识别[J].电子测量技术,2023,46(2):169-174

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-11
  • 出版日期:
文章二维码