基于软件无线电的无人机入侵检测方法研究
DOI:
CSTR:
作者:
作者单位:

1.桂林航天工业学院广西高校无人机遥测重点实验室 桂林 541004; 2.厦门大学信息科学与技术学院 厦门 361005

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

广西高校中青年教师科研基础能力提升项目(2020KY21020)、桂林市重点研发计划(20210206-3)、广西重点研发计划(桂科AB21196066)、国家自然科学基金(61966010)项目资助


Research of UAV intrusion detection method based on software defined radio
Author:
Affiliation:

1.Guangxi Colleges and Universities Key Laboratory of Unmanned Aerial Vehicle(UAV)Telemetry,Guilin University of Aerospace Technology,Guilin 541004,China; 2.School of Information Science and Engineering,Xiamen University,Xiamen 361005,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    无人机的普及带来了诸多隐私安全问题,而要解决该问题就需对无人机信号进行动态有效检测,从而实现有效管制。本文提出了一种基于软件无线电的无人机入侵检测方法并进行了硬件实现。该方法利用自适应去噪及三次聚类方法实现了无人机信号的识别与分类。仿真结果表明,该方法在信噪比-16.2 dB以上时检测概率达到100%。同时本文依托以AD9361+FPGA+STM32为核心的软件无线电平台进行了方法的工程化实现,实测结果表明方法实用有效,在室内复杂环境及室外环境下均能有效地识别出无人机信号及类型,具有很强的应用前景。

    Abstract:

    Since the popularity of UAVs has brought about many privacy and security problems, the solution should comply with dynamic and effective detection of UAV signals, so as to achieve effective control. This paper proposes a software radio intrusion detection method for UAV with hardware implementation. It uses adaptive denoising and cubic clustering to recognize and classify UAV signals. Simulation results show that the detection probability can reach 100% when the SNR is above -16.2 dB. Based on the software radio platform AD9361+FPGA+STM32 as the core, it carries out the relevant engineering implementation. The measured results show that it is practical and effective, which can effectively identify UAV signals and types in both indoor and outdoor complex environments with strong application prospect.

    参考文献
    相似文献
    引证文献
引用本文

姚钘,刘琼,谭智诚.基于软件无线电的无人机入侵检测方法研究[J].电子测量技术,2023,46(2):101-110

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-11
  • 出版日期:
文章二维码