一种改进CBAM机制和细节恢复的单幅图像去雾算法
DOI:
CSTR:
作者:
作者单位:

1.西安石油大学电子工程学院 西安 710065; 2.西安交通大学软件学院 西安 710049

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金(62002283)、陕西省重点研发计划(2020GY-152)、西安石油大学博士创新基金(290088266)、西安石油大学研究生创新计划(YCS21113129)项目资助


A single image defogging algorithm based on improved CBAM mechanism and detail recovery
Author:
Affiliation:

1.School of Electrical Engineering, Xi′an Shiyou University, Xi′an 710065, China; 2.School of Software Engineering, Xi′an Jiaotong University, Xi′an 710049, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    图像去雾作为图像增强的基本问题得到了广泛关注,已成为具有挑战性的研究方向。针对目前图像去雾算法中先验方法与深度学习方法存在的颜色失真以及雾霾残留问题,提出了一种基于注意力机制的细节恢复的图像去雾算法。首先,引入改进CBAM 模块,设计出注意力基本块并将基本块封装成组块;其次,为加强组块内信息交互能力,组块间引入了密集连接残差块;最后,设计细节恢复模块对去雾图像进行细节恢复,以进一步减轻雾霾残留的影响。数值仿真实验表明:在RESIDE数据集上,所提算法与主流去雾算法相比取得了较高的峰值信噪比和结构相似度,同时在真实图像上也得到了更好的视觉效果。

    Abstract:

    As the basic problem of image enhancement, image defogging has received extensive attention. It has become a challenging area of research. For the problems of color distortion, fog residue of defogging images in prior method and deep learning method, this paper proposed an image defogging algorithm based on attention mechanism for detail recovery. Firstly, the improved CBAM (convolutional block attention module) module is introduced to design the attention basic block and encapsulate the basic block into blocks. Secondly, to strengthen the information interaction ability within the block, dense connection residual blocks are introduced between the blocks. Finally, the detail recovery module is designed to recover the detail of the fog image to further reduce the impact of fog residue. Numerical simulation experiments show that the proposed algorithm achieves higher peak signal-to-noise ratio and structural similarity compared with the mainstream defogging algorithm on the RESIDE (realistic single image defogging) data set and better visual effects on real images on the RESIDE (realistic single image defogging) data set.

    参考文献
    相似文献
    引证文献
引用本文

王子昭,景明利,史金钢,陈腾飞,刘婉春,樊锐博.一种改进CBAM机制和细节恢复的单幅图像去雾算法[J].电子测量技术,2023,46(2):161-168

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-11
  • 出版日期:
文章二维码