基于KNN和XGBoost的室内指纹定位算法
DOI:
CSTR:
作者:
作者单位:

1.桂林理工大学机械与控制工程学院 桂林 541004; 2.桂林理工大学南宁分校电气与电子工程系 南宁 532100

作者简介:

通讯作者:

中图分类号:

TP181

基金项目:

国家自然科学基金(61741303);广西空间信息与则绘重点实验室基金(19-185-10-08)项目资助


Indoor fingerprint localization algorithm based on KNN and XGBoost
Author:
Affiliation:

1.School of Mechanical and Control Engineering, Guilin University of Technology, Guilin 541004, China; 2.Department of Electrical and Electronic Engineering, Guilin University of Technology at Nanning, Nanning 532100, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对KNN算法定位精度有待提高以及定位稳定性较差的问题,本文提出了一种基于KNN算法和XGBoost算法的室内指纹定位算法。该算法首先将样本集划分为训练集和测试集,将训练集中AP的RSSI数据作为特征,坐标作为标签,使用XGBoost算法进行建模。其次,融合KNN模型,将KNN算法寻找到的近邻集合引入XGBoost模型中,再结合单独XGBoost算法的预测结果,以实现坐标定位。最后,在实际环境下研究了算法的K值、回归树数量、决策树深度和学习率对误差的影响,确定算法的相关参数。通过搭建的实际实验环境进行了测试,实验结果表明,本文提出算法的平均定位误差为1.55 m,较于KNN算法和XGBoost算法分别减少了24.76%和11.93%,并且累积分布函数曲线的收敛速度更快,具有较好的定位性能。

    Abstract:

    This paper proposes an indoor fingerprint localization algorithm based on KNN and XGBoost algorithm to address the problems that the localization accuracy of KNN algorithm needs to be improved and the stability of localization is poor.The algorithm first divides the sample set into a training set and a test set, RSSI data of AP in training set was used as features and coordinates were used as labels, and XGBoost algorithm was used for modeling. Secondly, the KNN model is integrated, the nearest neighbor set found by KNN algorithm is introduced into XGBoost model, and combined with the prediction results of individual XGBoost algorithm to achieve coordinate positioning.Finally, the effects of the algorithm′s K-value, number of regression trees, decision tree depth and learning rate on the error are investigated in a practical setting to determine the relevant parameters of the algorithm.The experimental results show that the average localization error of the proposed algorithm is 1.55 m, which is 24.76% and 11.93% less than that of the KNN algorithm and XGBoost algorithm, respectively, and the cumulative distribution function curve converges faster and has better localization performance.

    参考文献
    相似文献
    引证文献
引用本文

卢海钊,彭慧豪,唐滔,王守峰,张烈平.基于KNN和XGBoost的室内指纹定位算法[J].电子测量技术,2023,46(2):81-86

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-11
  • 出版日期:
文章二维码