基于SIFT和感知哈希改进的CamShift跟踪算法
DOI:
CSTR:
作者:
作者单位:

上海应用技术大学计算机科学与信息工程学院 上海 201418

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

国家自然科学基金(61973307,61903256)项目资助


Improved CamShift tracking algorithm based on SIFT and perceptual hash
Author:
Affiliation:

School of Computer Science and Information Engineering, Shanghai Institute of Technology,Shanghai 201418, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统的CamShift仅使用目标的颜色直方图作为特征,因此在相似背景干扰、遮挡、高速运动等情况下容易出现跟踪不准确或丢失跟踪目标的现象。针对上述不足,提出了基于SIFT和感知哈希改进的CamShift跟踪算法。首先,将图像从RGB颜色空间转为HSV颜色空间,分别得出色调和饱和度直方图,并提取图像的边缘梯度直方图进行融合获得目标的融合直方图。其次在CamShift算法框架下得到最优候选目标,若候选目标与目标模板的Bhattacharyya距离大于阈值时,则使用改进的感知哈希算法进行最优候选目标的搜索。然后在下一帧搜索时,在目标和视频序列的高信息熵部分使用SIFT算法进行特征点的提取并匹配从而获取初始搜索窗口,若SIFT算法匹配失败,则使用卡尔曼滤波预测的搜索框作为初始搜索窗口。将该算法首先在OTB-100数据集上和其他常用的跟踪算法进行对比实验,实验结果表明算法能够准确地跟踪目标,跟踪成功率达到了90.1%。将该算法应用于人脸跟踪任务中,并与其他的人脸跟踪算法进行对比实验,实验结果表明该算法具有更好的性能和准确性,跟踪成功率达到了93.5%。

    Abstract:

    The traditional CamShift only uses the color histogram of the target as the feature, so it may lead to inaccurate tracking or losing the target in the case of similar background, occlusion, high-speed motion and so on. In view of the above shortcomings, an improved CamShift tracking algorithm based on SIFT and perceptual hash is proposed. Firstly, transforming the image from RGB color space to HSV color space, then extracting the hue and saturation histograms and the edge gradient histogram of the image and combine the histograms to obtain the fusion histogram of the target. Secondly, using the fusion histogram of the target to obtain the optimal candidate target under the framework of CamShift algorithm. If the Bhattacharyya distance between the candidate target and the target template is larger than the threshold, using the improved perceptual hash algorithm to search the optimal candidate target. Then in the next frame search, using the SIFT algorithm to extract the feature points of the high information entropy part of both the target and video sequence, then matching the feature points to obtain the initial search window. If the SIFT algorithm fails to match, using the search box which is predicted by the Kalman filter as the initial search window to search the target. The algorithm is compared with other common tracking algorithms on OTB-100 dataset. The experimental results show that the algorithm can track the target accurately and the success rate reaches 90.1%. Then applying the algorithm to the task of face tracking and compared with other face tracking algorithms. The experimental results show that the algorithm has good performance and high accuracy, and the tracking success rate reaches 93.5%.

    参考文献
    相似文献
    引证文献
引用本文

李文举,王子杰,崔柳.基于SIFT和感知哈希改进的CamShift跟踪算法[J].电子测量技术,2023,46(4):184-192

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-22
  • 出版日期:
文章二维码