基于时空自适应图卷积网络的跌倒检测算法
DOI:
CSTR:
作者:
作者单位:

广东工业大学信息工程学院 广州 510006

作者简介:

通讯作者:

中图分类号:

TP394.1

基金项目:

广东省科技计划项目(2017A010101016)资助


Fall detection algorithm based on spatial-temporal adaptive graph convolution network
Author:
Affiliation:

School of Information Engineering, Guangdong University of Technology,Guangzhou 510006, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有图卷积网络(GCN)需要预先定义人体骨架拓扑图和模型较大的问题,提出了基于时空自适应图卷积网络(STAGCN)的跌倒检测算法。该网络包括3个部分:利用HRNet姿态估计算法从视频中提取人体骨架点序列,并预处理成四维张量;引入归一化嵌入式高斯函数通过学习(无需人工预定义)得到人体拓扑图,利用空间自适应图卷积获取人体关联特征;利用多尺度卷积提取时间运动特征,提高模型获取动态信息的能力。在公开数据集和自建数据集上分别进行仿真,准确率分别达95.45%和99.55%。结果表明,该算法优于目前GCN方法,参数量只有后者的1/4甚至更少。本文算法还可以适用于不同的数据集。

    Abstract:

    To solve the problem that existing graph convolution network (GCN) need to pre-define human skeleton topology and the model is large, a fall detection algorithm based on spatiotemporal adaptive graph convolutional network (ST-AGCN) is proposed. The network consists of three parts: firstly, HRNet, a human pose estimation algorithm, is used to extract human skeleton points from video and preprocess them into four-dimensional tensor. Secondly, the normalized embedded Gaussian function is introduced to obtain the human body topology by learning (without manual pre-definition), and the human body correlation features are obtained by spatial adaptive graph convolution. Thirdly, multi-scale convolution is used to extract temporal motion features to improve the model′s ability to obtain dynamic information. Simulations are carried out on public and self-built dataset, and the accuracy rates are 95.45% and 99.55%, respectively. The results show that the proposed algorithm is better than the current GCN methods, and the number of parameters is only a quarter of the latter, or even less. Another advantage of our algorithm is that it can be applied to different datasets.

    参考文献
    相似文献
    引证文献
引用本文

刘鹏飞,李伟彤.基于时空自适应图卷积网络的跌倒检测算法[J].电子测量技术,2023,46(3):150-156

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-26
  • 出版日期:
文章二维码