基于多尺度特征融合与混合注意力的云检测算法
DOI:
CSTR:
作者:
作者单位:

南京理工大学瞬态物理国家重点实验室 南京 210096

作者简介:

通讯作者:

中图分类号:

TP751

基金项目:

国家自然科学基金(U2031138)项目资助


Cloud detection algorithm based on multi-scale feature fusion and hybrid attention
Author:
Affiliation:

State Key Laboratory of Transient Physics, Nanjing University of Science and Technology,Nanjing 210096, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统云检测方法对特殊场景识别效果较差而造成的边缘信息丢失和薄云、碎云误判等问题, 提出了一种基于多尺度特征融合与混合注意力的高精度云检测MSHA-DeepLab算法。首先,在原始DeepLabV3+算法的基础上引入注意力模块,提高重要特征权重,增强网络对局部特征的感受能力。其次,使用深度可分离卷积提取不同尺度的语义信息,减少网络参数量。最后,进行逐级上采样和特征融合,减少特征信息丢失。选择多种方法与改进算法对比,使用不同场景、不同波段组合的数据集进行测试。结果表明,改进后算法的精确率达到了86.376 9%,召回率达到了85.895 9%,特异性达到了96.915 6%,交并比达到了82.846 7%,精确度达到了94.600 8%,相比原始算法和其他方法有明显提高。验证了提出算法能在不同条件下实现高精度的云检测。

    Abstract:

    The traditional cloud detection methods are less effective in recognizing special scenes, which cause problems such as edge information loss and thin and broken clouds misjudgment. In this study, MSHA-DeepLab algorithm based on multi-scale feature fusion and hybrid attention is proposed for high-precision cloud detection. First, the attention module is introduced based on the original algorithm, which to increase the weight of important features and improve the sensibility of local features. Second, depthwise separable convolutions are used to extract the multiscale semantic information and reduce the amount of network parameters. Finally, continuous up-sampling and feature fusion are performed to reduce the loss of feature information. After testing and comparing the datasets with different scenes and different band combinations using various methods and the improved algorithm, it can be seen that the precision of the algorithm reaches 86.376 9%, the recall reaches 85.895 9%, the sepecificity reaches 96.915 6%, the IoU reaches 82.846 7%, the accuracy reaches 94.600 8%, which is a significant improvement compared with the original algorithm and other methods. It is verified that the proposed algorithm can achieve high accuracy cloud detection under different conditions.

    参考文献
    相似文献
    引证文献
引用本文

胡威,管雪元,付珩.基于多尺度特征融合与混合注意力的云检测算法[J].电子测量技术,2023,46(3):142-149

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-26
  • 出版日期:
文章二维码