基于CA-ResNet50的轮胎激光散斑图的分类研究
DOI:
CSTR:
作者:
作者单位:

1.沈阳理工大学 沈阳 110000; 2.沈阳工业大学体育装备产业技术学院 沈阳 110870

作者简介:

通讯作者:

中图分类号:

TP2

基金项目:

国家重点研发计划(19YJC890012)、辽宁省教育厅项目(LJGD2020019)、国家重点研发计划(2017YFC082100-2)项目资助


Classification of tyre laser scattergrams based on improved residual networks
Author:
Affiliation:

1.Shenyang Ligong University,Shenyang 110000,China; 2.Sports Equipment Industry Technology Research Institute,Shenyang University of Technilogy,Shenyang 110870,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对轮胎激光散斑图识别精度低的问题,本文提出了一种新的轮胎激光散斑图分类网络(CA-ResNet50)。首先选用ResNet50为基础的残差网络,改变传统ResNet50网络模型中的残差块结构,最大程度发挥批标准化的作用;再引入轻量级的卷积注意力模块,增强网络模型对轮胎缺陷的特征提取能力;然后,用LeakyRelu激活函数代替Relu激活函数,解决神经元的“失活”问题;最后,对训练数据集进行扩展,以克服训练中数据量不足和网络模型拟合过度的问题。将本文中提出的CA-ResNet50与当前常用的分类网络模型在相同的数据集上进行对比,实验结果证明本文所提网络模型对轮胎激光散斑图的测试精度高于其他网络,识别精度可达到99.7%。

    Abstract:

    To address the problem of low accuracy of tire laser scattergram recognition, this paper proposes a new classification network for tire laser scattergram (CA-ResNet50). Firstly, ResNet50-based residual network is selected to change the residual block structure in the traditional ResNet50 network model to maximize the role of batch normalization. Then, a lightweight convolutional attention module is introduced to enhance the feature extraction ability of the network model for tire defects. Next, LeakyRelu activation function is used instead of the Relu activation function to solve the neuronal deactivation problems.Finally, the training data set is extended to overcome the problems of insufficient data volume and overfitting of the network model in training. The CA-ResNet50 proposed in this paper is compared with the current commonly used classification network models on the same dataset, and the experimental results prove that the testing accuracy of the proposed network model in this paper is higher than other networks for tire laser scatter maps, and the recognition accuracy can reach 99.7%.

    参考文献
    相似文献
    引证文献
引用本文

刘韵婷,葛忠文,郭辉.基于CA-ResNet50的轮胎激光散斑图的分类研究[J].电子测量技术,2023,46(4):169-174

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-22
  • 出版日期:
文章二维码