基于改进YOLOv5的电力设备检测算法
DOI:
CSTR:
作者:
作者单位:

云南大学信息学院 昆明 650500

作者简介:

通讯作者:

中图分类号:

基金项目:

云南省重大科技专项(202202AD080004)、国家自然科学基金(12263008)项目资助


Power equipment detection algorithm based on improved YOLOv5
Author:
Affiliation:

School of Information, Yunnan University,Kunming 650500, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对电力设备背景复杂、小目标密集等特点导致无人机智能电力巡检精度低、效果不佳等问题,提出了一种改进YOLOv5的目标检测算法。首先在原模型上增加一层检测层,重新获取锚点框以便能更好地学习密集小目标的多级特征,提高模型应对复杂电力场景的能力;其次对模型的特征融合模块PANet结构进行改进,通过跳跃连接的方式融合不同尺度的特征,增强信息的传播与重用;最后结合协同注意力模块设计主干网络,以聚焦目标特征,增强复杂背景中密集目标区域的显著度。实验结果表明:所提算法的平均精度均值(IoU=0.5)达到97.1%,比原网络检测性能提升了5.6%,有效改善了复杂背景下小目标的错测、漏检现象。

    Abstract:

    Aiming at the problems of low accuracy and poor effect of UAV intelligent power inspection caused by the complex background and dense small targets of power equipment, an improved target detection algorithm of YOLOv5. Firstly, a detection layer is added to the original model to re-obtain the anchor frame so as to better learn the multi-level features of dense small targets and improve the ability of the model to deal with complex power scenarios. Secondly, the feature fusion module PANet structure of the model is improved, and the features of different scales are fused by jumping connection to enhance the dissemination and reuse of information. Finally, combined with the collaborative attention module, the backbone network is designed to focus on the target characteristics and enhance the visibility of dense target areas in complex backgrounds. The experimental results show that the average accuracy of the proposed algorithm (IoU=0.5) reaches 97.1%, which is 5.6% higher than the original network detection performance, and effectively improves the false detection and missed detection of small targets in complex background.

    参考文献
    相似文献
    引证文献
引用本文

郑婷婷,周浩,王秋忆.基于改进YOLOv5的电力设备检测算法[J].电子测量技术,2023,46(4):155-160

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-22
  • 出版日期:
文章二维码