基于GWO-XGBoost泥石流灾害预测
DOI:
CSTR:
作者:
作者单位:

西安工程大学电子信息学院 西安 710600

作者简介:

通讯作者:

中图分类号:

P642.23

基金项目:

陕西省自然科学基础研究计划项目(2022JM-322)、陕西省技术创新引导专项(2020CGXNX-009)资助


Debris flow disaster prediction based on GWO-XGBoost model
Author:
Affiliation:

School of Electronic Information, Xi′an Engineering University,Xi′an 710600, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对引发泥石流灾害的致灾因子复杂多样而造成模型输入数据维度过大和极端梯度提升树容易陷入局部最优导致预测模型准确率不高的问题,提出一种基于GWOXGBoost算法模型的泥石流灾害预测方法。首先,对传感器采集到的原始数据进行预处理,得到规范数据,然后通过线性判别分析法进行数据降维得到耦合性低且贡献率较高的致灾因子作为模型输入,对泥石流灾害是否发生进行预测;其次使用灰狼优化算法对模型超参数进行寻优;最后以磨子沟监测数据进行仿真验证。结果表明:经过预处理和线性判别分析法降维后的规范数据解决了模型输入的维数灾难问题,GWO-XGBoost泥石流灾害预测模型的预测准确率为96.64%,相较于随机森林模型、支持向量机模型和极端梯度提升树模型的预测准确率分别提高了6.69%,5.13%和3.86%,丰富了泥石流灾害预测方法并为相关决策部门提供了全新的思路。

    Abstract:

    In view of the complexity and diversity of the disaster causing factors that cause debris flow disasters, resulting in the excessive dimension of the model input data and the problem that extreme gradient boosting is easy to fall into local optimization, resulting in the low accuracy of the prediction model. A debris flow disaster prediction method based on GWO-XGBoost model is proposed. First, the original data collected by the sensor is preprocessed to obtain the standard data, and then the dimension of the data is reduced by linear discriminant analysis, and the disaster causing factors with low coupling and high contribution rate are obtained as the model input to predict whether the debris flow disaster occurs; Secondly, grey wolf optimizer is used to optimize the super parameters of the model; Finally, Mozigou monitoring data are used for simulation verification. The results show that the normalized data after preprocessing and dimensionality reduction by linear discriminant analysis algorithm solves the problem of dimensionality disaster of model input. The prediction accuracy of GWO-XGBoost debris flow disaster prediction model is 96.64%, which is 6.69%, 5.13% and 3.86% higher than that of random forest model, support vector machine model and xgboost model respectively, It enriches the prediction methods of debris flow disasters and provides new ideas for relevant decisionmaking departments.

    参考文献
    相似文献
    引证文献
引用本文

王智勇,李丽敏,温宗周,尚艳芳,王莲霞.基于GWO-XGBoost泥石流灾害预测[J].电子测量技术,2023,46(3):92-99

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-26
  • 出版日期:
文章二维码